Clock Synchronization in Wireless Sensor Networks: Local vs. Global

Philipp Sommer Roger Wattenhofer

Time in Sensor Networks

Synchronized clocks are essential for many applications:

Clock Synchronization in Practice

Many different approaches for clock synchronization

Hardware Clocks of Sensor Nodes

Counter register of the microcontroller

Sourced by an external crystal (32kHz, 7.37 MHz)

Clock drift

Random deviation from the nominal rate dependent on ambient temperature, power supply, etc. (30-100 ppm)

Message Delay in Wireless Sensor Networks

Problem: Jitter in the message delay

Various sources of errors (deterministic and non-deterministic)

Solution: Timestamping packets at the MAC layer (Maróti et al.)

 \rightarrow Jitter in the message delay is reduced to a few clock ticks

Bounds on the Synchronization Accuracy

Two nodes u and v cannot be synchronized perfectly

- Messages between two neighboring nodes may be fast in one direction and slow in the other, or vice versa.
- Error increases as the square-root of the distance from the reference node

Clock Synchronization: Local vs. Global

- Global property: Minimize clock error between any two nodes
- Local ("gradient") property: Small clock error between two nodes if the distance between the nodes is small.

Flooding Time Synchronization Protocol (FTSP) Gradient Time Synchronization Protocol (GTSP)

Gradient Time Synchronization Protocol (GTSP) [Sommer et al., IPSN'09]

- Synchronize clocks with all neighboring nodes
 No reference (root) node necessary
 No tree or pre-established topology
- Averaging clock value/rate of all neighbors (including node itself)

Clock Rate	Clock Offset
$l_i(t_{k+1}) = \frac{\left(\sum_{j \in \mathcal{N}_i} \frac{x_j(t_k)}{h_i(t_k)}\right) + l_i(t_k)}{ \mathcal{N}_i + 1}$	$\theta_i(t_{k+1}) = \theta_i(t_k) + \frac{\sum_{j \in \mathcal{N}_i} L_j(t_k) - L_i(t_k)}{ \mathcal{N}_i + 1}$

2

Experimental Evaluation

Testbed of 20 Crossbow Mica2 sensor nodes

Global clock synchronization error

Pair-wise synchronization error between any nodes in the network

Local clock synchronization error

Pair-wise synchronization error between **neighboring** nodes

Experimental Results

- Global clock synchronization error
 - **7.7** μ s with FTSP, **14.0** μ s with GTSP

FTSP needs more time to synchronize all nodes after startup

Experimental Results (2)

- Local clock synchronization error
 - 5.3 μ s with FTSP, 4.0 μ s with GTSP

GTSP takes slightly more time to stabilize

Neighbor Synchronization Error: FTSP vs. GTSP

 FTSP has a large clock error for neighbors with large stretch in the tree (Node 8 and Node 15)

Time in Sensor Networks (Revisited)

Synchronized clocks are essential for many applications:

Conclusion and Future Work

- Gradient Time Synchronization Protocol (GTSP)
 Distributed time synchronization algorithm (no leader)
 Improves the synchronization error between neighboring nodes while still providing precise network-wide synchronization
- Is there a "perfect" clock synchronization protocol?
 Goal: Minimizing local and global error at the same time

