# Results for radio broadcast A Survey

### Vijay D'silva vdsilva@inf.ethz.ch

Department of Computer Science

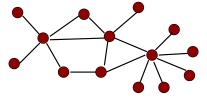
### Theorem (Broadcast Potpourri)

In a multi-hop radio network, broadcast using a deterministic algorithm:

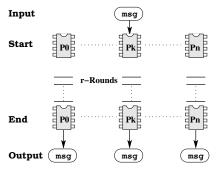
- requires processor ids
- is  $\Omega(n)$  for a family of networks
- is  $\Omega(D\log(n))$  for another family

There exists a randomized algorithm achieving broadcast with constant probability in  $O(D \log N + \log^2 N)$  rounds.

## Multi-hop radio network



- Network: undirected graph G = (V, E)
- Node:  $v \in V$ , Turing machine
- Nodes transmit or receive
- $\{v, v'\} \in E$  can communicate
- Message received if *exactly* one neighbour transmits
- Otherwise hear noise
- Synchronous rounds

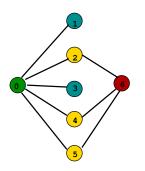


- Finite set of nodes
- Start: source has message
- Protocol: run locally by nodes
- End: all nodes have message
- Nodes don't know topology
- Problem: no collision detection

# The Multi-hop Quiz

Assume no node ids. Lower bound for a deterministic algo? rounds > Network 1 n Network  $rounds \ge$ n n Impossible n n n n

## A family of networks



- Family *C<sub>n</sub>*: Source, sink, *n* layer nodes
- Source connected to all layer nodes
- Some layer nodes connected to sink
- Nodes have ids
- Have to ensure a golden node transmits
- Broadcasting in C<sub>n</sub> can be reduced to winning the n<sup>th</sup> hitting game

 $Gold = \{6, 9, 15\}$ You win! 16 12 8  $\{11\}, \{12, 7, 3\},\$  $\{7\}, \{9, 6, 10\},\$ **{6**}

- $Lamps = Blue \cup Gold$
- Blue  $\cap$  Gold =  $\emptyset$
- Aim: Find a gold lamp
- Initially all lamps off
- Move:  $M_i \subseteq Lamps$
- If  $|M_i \cap Gold| = 1$ , player wins
- If  $|M_i \cap Blue| = 1$ , switch on
- Else "Try Again! "

## **Adversary Procedure**

- For each player strategy, define Gold to foil it
- Return Try Again! as often as possible
- Oblivious strategy: does not depend on referee's answers
- Sufficient to consider oblivious strategies

#### Find Set. Input: set of moves $M_i$

```
Gold := Lamps

while winning move M_i exists do

move Gold \cap M_i to Blue

while non-singleton blue move M_j exists do

pick \ell \in Gold \cap M_j

move \ell to Blue

end while

end while

output Gold
```

### Find Set(M<sub>i</sub>)

Gold := Lampswhile winning  $M_i$  exists do move *Gold*  $\cap$  *M<sub>i</sub>* to *Blue* while blue M<sub>i</sub> exists and  $|M_i| > 1$  do pick  $\ell \in Gold \cap M_i$ move l to Blue end while end while output Gold

#### Lemma 1

If the procedure returns the set *Gold*,

- $|M_i \cap Gold| \neq 1$
- *M<sub>i</sub>* is a blue move iff *M<sub>i</sub>* is a singleton

#### Lemma 2

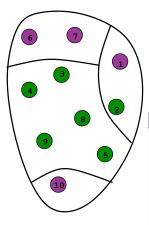
If  $|\{M_i\}| \leq \frac{n}{2}$  then the output set  $Gold \neq \emptyset$ .

- Bar-Yehuda, Goldreich, Itai, PODC 1987 and Journal of Computer and System Sciences 1992.
- Successful broadcast reduced to winning hitting game
- Rounds for broadcast and steps for winning strategy differ by constant factor of <sup>1</sup>/<sub>4</sub>
- $n^{th}$  hitting game cannot be won in less than  $\frac{n}{2}$  steps

#### Theorem (Lower Bound for $C_n$ )

There exists no deterministic broadcast protocol which terminates in less than  $\frac{n}{8}$  rounds for any network in  $C_n$ .

### Towards a better lower bound



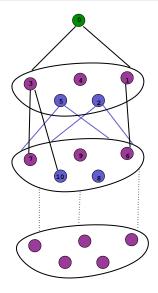
- A set S of k disconnected nodes
- In each round *i*, compare transmitting and silent nodes
- Retain the majority in S

#### Lemma: Properties of S

After  $1 \le r \le \log(\frac{k}{2})$  rounds

- |S| ≥ 2
- If a pair v<sub>1</sub>, v<sub>2</sub> ∈ S, they have both transmitted together or both remained silent in each round.

## Another network family



- Construct a graph  $B_n^D$
- Diameter  $D \leq \frac{n}{2}$
- Layers with  $\frac{n}{D}$  disconnected nodes
- Pick a *collision pair* from the lemma
- Connect to all nodes in next layer
- Other nodes connect to fewer nodes in next layer
- D such layers

### An improved lower bound

- Bruschi and Del Pinto, Distributed Computing 1997
- Independently, Chlebus et. al, SODA 2000
- Given protocol and network, find collision pairs
- Message reaches layer *i* from *i* + 1 if exactly one node from collision pairs is used
- n(1 i/D) candidates for collision pairs

### Theorem (Lower Bound for $B_n^D$ )

Given a deterministic broadcast protocol and  $n, D \leq \frac{n}{2}$ , there exists a network  $B_n^D$  which requires  $\Omega(D\log(n))$  rounds for broadcast.

## Summary: Deterministic Radio Broadcast

- First lower bound:  $\Omega(n)$
- Best known lower bound: Ω(Dlog(n))
- First distributed algorithm: Diks et al, ESA 1999
- First sub-quadratic algo: O(n<sup>11/6</sup>), Chlebus et al, SODA 2000
- Non constructive upper bound: O(n log<sup>2</sup>(n)), Chrobak, Gasieniec and Rytter, FOCS 2000
- Constructive upper bound: Indyk, SODA 2002

- Bar-Yehuda, Goldreich, Itai, PODC 1987 and Journal of Computer and System Sciences 1992
- Does not require node ids
- Input: upper bound on nodes in network and max degree
- Matches lower bound on some network families

### Decay(k, msg)

coin := heads steps := 0 **while** coin = heads and  $steps \le k$  **do** send *msg* to neighbours flip *coin* increment *steps* **end while** 

### Theorem (Decay)

When  $d \ge 2$  neighbours of a node v execute Decay starting simultaneously, the probability that v receives a message by time t, P(t, d) satisfies:

• As 
$$t 
ightarrow \infty$$
 ,  ${\it P}(t, {\it d}) \geq rac{2}{3}$ 

• For 
$$t \geq 2\lceil \log(d) \rceil$$
,  $P(t, d) > \frac{1}{2}$ 

### **Broadcast Protocol**

#### Broadcast( $N, \Delta$ )

 $k := 2\lceil \log \Delta \rceil$   $p := \lceil \log(N/\varepsilon) \rceil$ wait till *msg* arrives for p phases do wait till (*rnd mod k*) = 0 Decay(k, msg) end for

- N: upper bound on nodes
- Δ: upper bound on max degree
- Runs in *p* phases
- Execution synchronized in phases to satisfy precondition of theorem.

## **Broadcast Protocol: Simulation**

|              | 2                       |
|--------------|-------------------------|
| N =          | 6                       |
| $\Delta =$   | 4                       |
| $\epsilon =$ | 0.1                     |
| k=2          | $\lceil \log(4) \rceil$ |
| =            | 4                       |
| p = [l]      | log(60) <sup>-</sup>    |
| =            | 6                       |

| Phase 1 | S                   | <i>V</i> <sub>1</sub> | <i>V</i> <sub>2</sub> | V <sub>3</sub> |
|---------|---------------------|-----------------------|-----------------------|----------------|
| 0       | <i>H</i> , <i>m</i> | Idle                  | Idle                  | e Idle         |
| 1       | <i>Н</i> , <i>т</i> | Idle, <i>m</i>        | ldle,                 | <i>m</i> Idle  |
| 2       | <i>Н</i> , <i>т</i> | Idle, <i>m</i>        | ldle,                 | <i>m</i> Idle  |
| 3       | <i>T</i> , <i>m</i> | Idle, m               | Idle,                 | <i>m</i> Idle  |
| Phase 2 |                     |                       |                       |                |
| 0       | <i>H</i> , <i>m</i> | <i>H</i> , <i>m</i>   | <i>H</i> , <i>m</i>   | Idle           |
| 1       | <b>T</b> , <b>m</b> | <i>Н</i> , <i>т</i>   | H, m                  | Idle           |
| 2       | <b>T</b> , <b>m</b> | <b>T</b> , <b>m</b>   | <b>T</b> , <b>m</b>   | Idle           |
| 3       | <i>T</i> , <i>m</i> | <b>T</b> , <b>m</b>   | <b>T</b> , <b>m</b>   | Idle           |
| Phase 3 |                     |                       |                       |                |
| 0       | <i>H</i> , <i>m</i> | <i>H</i> , <i>m</i>   | <i>H</i> , <i>m</i>   | Idle           |
| 1       | <i>Н</i> , <i>т</i> | <b>T</b> , <b>m</b>   | H, m                  | Idle           |
| 2       | <b>T</b> , <b>m</b> | <b>T</b> , <b>m</b>   | H, m                  | Idle, <i>m</i> |
| 3       | <b>T</b> , <b>m</b> | <b>T</b> , <b>m</b>   | Н, т                  | Idle, <i>m</i> |

#### Theorem (Correctness: Message Receipt)

If the processors in a network execute Broadcast, starting with a source s, then:

 $Pr(all nodes receive m) \geq 1 - \varepsilon$ 

#### Proof

Pr(some v does not receive m)

- = Pr(some v did not receive m but its neighbours did)
- $\leq \sum_{v \neq s} Pr(v \text{ didn't receive } m \text{ but its neighbours did})$

$$\leq n \cdot \left(\frac{1}{2}\right)^{r} \leq n \cdot \frac{\varepsilon}{N}$$

 $\leq \varepsilon$ 

## **Correctness: Termination - Preliminaries**

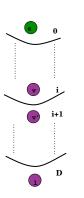
- $p(\varepsilon) = \Theta(\max(D, \log(N/\varepsilon)))$
- *p*(ε): a number of phases considering diameter and conflict delays
- rcv(v): round in which node v receives msg
- $dist(v_1, v_2)$ : length of shortest path from  $v_1$  to  $v_2$
- travel(m, p): distance raveled by m in p phases

#### Theorem (Correctness: Time for Broadcast)

If the broadcast protocol runs indefinitely, and v is the last node to receive the message *m*, then

 $Pr(v \text{ receives } m \text{ in } k \cdot p(\varepsilon) \text{ rounds}) > 1 - \varepsilon$ 

Consider an arbitrary node v and the probability that it does not receive a message by a certain round.



#### Proof

*Pr*(*v* receives after  $kp(\varepsilon)$  rounds) = Pr(m travels less than dist(v, s))< Pr(m travels less than D) $= Pr(\sum_{i=1}^{p(\varepsilon)} travel(m, 1) < D)$  $\leq \frac{\varepsilon}{N}$  $Pr(rcv(v) \le k \cdot p(\varepsilon)) > 1 - \frac{\varepsilon}{N} > 1 - \varepsilon$ 

## Summary: Randomized Radio Broadcast

- Randomization "beats" deterministic impossibility result
- Expected running time:  $O(D \log N + \log^2 N)$
- Lower bound:  $\Omega(D \log(N/D))$ , Kushilevitz and Mansour, SIAM Journal of Computing, 1998
- Alternate proof: Liu and Prabhakaran, COCOON, 2002
- General lower bound on diameter-2 networks: Ω(log<sup>2</sup> n), Alon et al. Journal of Computer and System Sciences, 1991
- Broadcast and gossip studied together in recent work

### Theorem (Broadcast Potpourri)

In a multi-hop radio network, broadcast using a deterministic algorithm:

- requires processor ids
- is  $\Omega(n)$  for a family of networks
- is  $\Omega(D\log(n))$  for another family

There exists a randomized algorithm achieving broadcast with constant probability in  $O(D \log N + \log^2 N)$  rounds.

- Example: Multi-hop radio network
- Reduction of broadcast to hitting games
- Lower bound for randomized algorithms

# The sensor my friend is blowing in the wind





- Sensor nodes around 100 cubic millimeter large
- Includes temperature, light sensors, bi-directional wireless communication
- Set of nodes: distributed system
- Many potential applications

- Reduce broadcast protocol to restricted protocol in which either source or sink is active
- Reduce restricted protocol to abstract protocol where only middle nodes transmit and either source or sink receives
- Middle nodes know when transmission is successful
- Abstract broadcast achieved when a gold node successfully transmits
- Reduce abstract broadcast to hitting game

- Consider the blue-gold network family
- Yao's minimax principle: reduce proving randomized lower bound to deterministic lower bound on probabilistic input
- Construct probability distribution of inputs
- Lower bound of Ω(log m)
- Connect D layers with N/D nodes in each
- Some calculations later:  $\Omega(D \log(N/D))$