Topology Control in Heterogeneous Wireless Ad-hoc Networks

Roman Metz

Distributed Computing Seminar
ETH Zurich, 30.11.2004
Overview of this Presentation

- Part 1:
 - Introduction

- Part 2:
 - Paper 1: General Graphs
 - DRNG & DLMST
 - Paper 2: Mutual Inclusion Graphs
 - $EYG_k(MG)$

- Part 3:
 - Proof for connectivity in DLMST
 - Conclusions
About the Papers

- **Topology Control in Heterogeneous Wireless Networks: Problems and Solutions**
 - Ning Li and Jennifer C. Hou
 - INFOCOM 2004

- **Localized Topology Control for Heterogeneous Wireless Ad-hoc Networks**
 - Xiang-Yang Li, Wen-Zhan Song, Yu Wang
 - MASS 2004
Part 1

Introduction
Why Topology Control?

- maintain network connectivity
 - every node can reach all others
 - reduce energy consumption
 - sending over near neighbours is more efficient than sending directly to a far target
 - do not send with maximal transmission power if not necessary

- improve network capacity
Related Work

- based on centralised algorithms
 - applicable for static networks
 - need global information
 - can achieve optimality

- based on unit disk graphs
 - homogeneous wireless nodes with uniform transmission ranges
 - every node sends with same transmission power

- based on fixed nodes
 - once a node has been initialised, it does not change its position
Why Heterogeneous Networks? (1)

- can easily add new devices without attention to the type of the device (mobility, dynamic)
 - we can use devices with non-uniform transmission ranges
- in practice there are many influences which affect the range of a device
 - obstacles like plants, walls, ... or other radio frequencies
Why Heterogeneous Networks? (2)

- there exist heterogeneous networks in which devices have dramatically different capabilities
 - Military: devices on soldiers vs. devices on vehicles
- even devices of the same type may have slightly different maximal transmission power
What we want

- each wireless node should locally
 - adjust its transmission power
 - select with which neighbours to communicate
- model should deal with dynamic changes in topology
 - addition of new nodes
 - removal or drop out of links (or nodes)
Simple adaptation doesn't work (1)

- can't guarantee network connectivity in heterogeneous case
 - no global information
 - assumptions about transmission power of counterparts don't hold anymore
- message overhead
 - energy
- unbounded out-degree
 - increase signal interference & overhead at a node
Simple adaptation doesn't work (2)

- A RNG structure in a homogeneous graph is connected since all links would be bi-directional.
- Edge (v_3, v_8) is discarded since v_7 lies in the shaded area between v_3 and v_8.
Part 2

General Graphs

&

Mutual Inclusion Graphs
G: (General Graph)

- a node u connects to another node v iff the Euclidean distance between these two nodes is smaller than the transmission range of u
- this model has uni- and bi-directional connections
Reachable Neighbourhood (1)

- in DRNG and DLMST each node has to know its reachable neighbourhood
 - set of nodes that a specific node can reach using its maximal transmission power (e.g. for v_1 we get v_2 and v_4)

![Diagram showing nodes and their connections](image)
Reachable Neighbourhood (2)

- finding this reachable neighbourhood is difficult since v_4 can't reach v_1
 - unfortunately it is not described in the paper how they will manage this in the General Graph
Directed RNG (Relative Neighbourhood Graph)

- **Algorithm:**
 - Collect reachable neighbourhood
 - Build topology by selecting those nodes from the reachable neighbourhood for which there does not exist a node p that is closer to u and v than u to v and p can reach v.
Directed Local MST (Minimum Spanning Tree)

Algorithm:
- collect reachable neighbourhood
- build topology computing a directed MST for each node that spans the reachable neighbourhood of this node and takes on-tree nodes that are one hop away as its neighbours.
MG: (Mutual Inclusion Graph)

- two nodes are connected iff they are within the maximum transmission range of each other
- there are only bi-directional links
Planar Topology

- for any topology control method it is not always possible to create a planar topology while keeping the communication graph connected
 - u is out of the transmission range of x and y, while v is in the transmission range of y and out of the range of x
 - according to MG, there are only xy, vy and uv in the graph
Sparse Structure

- based on RNG they found an extension that has bounded number of links \rightarrow sparse structure
- unfortunately that's not what we want
- we are looking for bounded out-degree
Idea of Spanners

- Given a graph G and a subgraph H of G.
- H is a t-Length Spanner of G if for any two nodes $u,v \in V(H)$ the shortest path between u and v is at most a constant factor t longer than the shortest path of these two nodes in G.
- if the weighting function is not the length but the power than we have with the same argumentation a Power Spanner instead of a Length Spanner
Power Spanner

- based on GG (Gabriel Graph) they found a graph which contains the minimum power consumption path for any two nodes in MG
- we are still looking for bounded out degree
Degree-Bounded Spanner (1)

- based on Yao Graph
- at each node u, partition space into k equal subspaces (= cones) and connect to the nearest node in each cone if there is any
Degree-Bounded Spanner (2)

- in a MG model simply selecting the closest incoming neighbour does not guarantee connectivity
 - v, w are in same cone of u; x, u are in same cone of v
 - node u keeps link uw and node w keeps link uw
 - node v keeps link vx and node x keeps link xv.
Novel Space Partition

- partition space into k equal subspaces (= cones)
- divide each cone into constant number of subsets and connect v to the nearest node w in each subset
- the algorithm guarantees that all nodes in a subset are connected to node w in this subset
$EYG_k(MG)$: (Extended Yao Graph)

- has bounded out-degree in $O(\log_2 q)$
- is a Length- and a Power-Spanner to MG
- is connected if MG is connected
- is bi-directional
- they reach almost optimum since any connected graph will have degree at least $O(\log_2 q)$

$q = \max_{v,w} \frac{r_v}{r_w}$ with $v \in V(MG)$ and $wv \in EYG_k(MG)$
Part 3

Proof & Conclusions
Proof for connectivity in G_{DLMST} (1)

- **Lemma 1:**

 For any edge (u, v) which is only in G but not in G_{DLMST}, there must be a unique path on T_u from u to v in G_{DLMST}. Let p be the last node on this path before v than we have $w(p, v) < w(u, v)$.

 \[w(u, v): \text{gives any edge in a graph a unique weight} \]
 \[T_u: \text{local MST rooted at node u containing all reachable nodes of u} \]
 \[G: \text{General Graph} \]
Proof for connectivity in G_{DLMST} (2)

- Proof (by contradiction):

Suppose $w(p, v) > w(u, v)$, we can construct another directed spanning tree T'_u rooted at u with lower weight, by replacing edge (p, v) with (u, v) and keeping all the other edges in T_u unchanged. This contradicts the assumption that T_u is the local directed MST.
Proof for connectivity in G_{DLMST} (1)

- **Lemma 2:**
 Let T be the global directed MST of G rooted at any node $w \in V(G)$, than $E(T) \subseteq E(G_{DLMST})$.

- **Proof (by contradiction):**
 For any edge $(u, v) \in E(T)$ suppose $(u, v) \notin E(G_{DLMST})$. Since v is on the directed local MST T_u, there exists a unique path from u to v with p as the last node on this path before v. We have $w(p, v) < w(u, v)$ by Lemma 1. By replacing edge (u, v) with (p, v) and keeping all the other edges in T unchanged, we can construct another global directed spanning tree T rooted at w that has lower weight than T. This contradicts the assumption that T is the global MST rooted at w.
Proof for connectivity in G_{DLMST} (4)

- **Theorem 1 (Connectivity of G_{DLMST}):**

 If G is strongly connected, then G_{DLMST} is also strongly connected.

- **Proof (by contradiction):**

 For any two nodes $u, v \in V(G)$, there exists a unique global MST T rooted at u since G is strongly connected. Since $E(T) \subseteq E(G_{DLMST})$ by Lemma 2, there is a path from u to v in G_{DLMST}.
Conclusions: Paper 1 (1)

- for a General Graph there are two localized topology control algorithms, DLMST and DRNG, which preserve connectivity.
- DLMST and DRNG preserve bi-directionality if they are based on a Mutual Inclusion Graph and Addition & Remove operations are applied.
Conclusions: Paper 1 (2)

- DLMST has a bounded out-degree while DRNG may be unbounded
- There is no description of how exactly they find the reachable neighbourhood
 - It is more like a theoretical and mathematical work showing the general possibility for building such topologies based on a General Graph
Conclusions: Paper 2

- $\text{EYG}_k(MG)$ has a stricter bound on the out-degree than DLMST and guarantees better characteristics
- Length- and Power-Spanner to MG
- they reach almost optimum since any connected graph will have degree at least $O(\log_2 q)$
Questions?