Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc Networks

Seminar of Distributed Computing WS 04/05
ETH Zurich, 1.2.2005

Nicolas Born
nborn@student.ethz.ch
Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc Networks
Costas Busch, Srikanth Surapaneni, Srikanta Tirthapura; SPAA 2003
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal
- Equivalence of Executions
- Performance Analysis
- Results
- Conclusion
Link Reversal Routing Algorithms

- Introduced by Gafni and Bertsekas (1981)
- Routing in mobile ad hoc networks
- Adaptive, self-stabilizing

Contribution of the paper: first performance analysis
Model
Link Reversal Routing Algorithms

- Ad-Hoc Network
- Network connectivity is assumed
- Each node has an unique id

- Suited for networks with “average mobility”
Underlying Communication Graph
Link Reversal Routing Algorithms

- Convert the ad-hoc network to a destination oriented graph
Notation
Link Reversal Routing Algorithms

- **Destination**
- **Good nodes**: nodes with at least one directed path to the destination
- **Bad nodes**: nodes with no directed path to the destination
- **Sinks**: nodes with only incoming links
Routing
Link Reversal Routing Algorithms

- When a node receives a packet, it forwards the packet on any outgoing link. The packet will eventually reach the destination.
Route Maintenance
Link Reversal Routing Algorithms

- If a node loses its route to the destination, the algorithm reacts by performing link reversals.
- Node finds out that it has become a sink -> it reverses the directions of some or all incoming links.
Work and Time
Link Reversal Routing Algorithms

- **Work**: number of reversals until stabilization.

- **Time**: number of parallel time steps until stabilization.
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal
- Equivalence of Executions
- Performance Analysis
- Results
- Conclusion
Full Reversal Algorithm

- When a node becomes a sink, it reverses the directions of all its links.
Implementation

Full Reversal Algorithm

- Idea: analogy to a river. Water flows from bigger height to lower height.

- => Implemented with heights
 - Height of node v_i: h_i
 - $h_d = 0$
 - N_i: neighborhood of v_i
 - Height of v_i after reversal: $\max\{ h_j \mid v_j \in N_i \} + 1$
Example
Full Reversal Algorithm

Node that reverses

Reversals: 7
Time: 4
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal
- Equivalence of Executions
- Performance Analysis
- Results
- Conclusion
Partial Reversal Algorithm

- If a node \(v \) becomes a sink, it reverses the links to those neighbors that have not reversed their links into \(v \).
- If every neighbor node has a reversed link to \(v \), it reverses every link.
Implementation
Partial Reversal Algorithm

- Also implemented using heights
 - Height of node v_i: h_i
 - $h_d = 0$
 - Height of v_i after reversal:
 $$\min\{ h_j | v_j \in N_i \} + 1$$

- Every node v keeps a list of its neighboring nodes that have reversed their links into v.
Example
Partial Reversal Algorithm

Reversals: 5
Time: 4

Node that reverses
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal

- Equivalence of Executions

- Performance Analysis

- Results

- Conclusion
Equivalence of Executions

- There are many different reversal schedules.

- **Goal:** show that any two executions of a deterministic reversal algorithm starting from the same initial state are equivalent.
Execution $R=r_1,\ldots,r_k$

Directed edge from r_i to r_j, iff
- v_i is neighbor of v_j
- r_j is first reversal of v_j after r_i in execution R
Main Theorem
Equivalence of Executions

- Two executions are equivalent, if they have the same dependency graph.

Theorem: Any two executions of a deterministic reversal algorithm starting from the same initial state are equivalent.
Conclusions
Equivalence of Executions

- For all executions of a deterministic reversal algorithm starting from the same initial state:
 - Final state is the same
 - Number of reversals of each node is the same

- The depth of the dependency graph is a lower bound for the time complexity of execution of a deterministic reversal algorithm.
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal
- Equivalence of Executions
- Performance Analysis
- Results
- Conclusion
Goal: lower and upper bound on the performance of the full reversal algorithm
Question

Full Reversal Algorithm

- For any reversal algorithm starting from any initial state, a good node never reverses till stabilization.

- But how many times do the bad nodes reverse?
- Idea: Group the bad nodes in layers!
Bad node v is in layer i, iff
- there is an incoming link to v from a node in layer $i-1$, or
- there is an outgoing link from v to a node in layer i.
Schematic View
Full Reversal Algorithm

Good Nodes

Layers of Bad Nodes

Destination

A Layer

L_1^I L_2^I L_3^I \ldots L_m^I
Execution E_1 (Step 1)

Full Reversal Algorithm

- There exists an execution E_1 which brings the system from state I to state I', such that every bad node reverses exactly one time.
Execution E_1(Step 2)
Full Reversal Algorithm
Execution E_1 (Step 3)
Full Reversal Algorithm
Execution E_1 (Step 4)
Full Reversal Algorithm
Execution E_1(Step 5)
Full Reversal Algorithm
End of Execution E_1

Full Reversal Algorithm
After Execution E_1

Full Reversal Algorithm

- At the end of this execution, all the bad nodes of layer 1 have become good, while all the bad nodes in the other layers stay bad.
Lemma: At the end of an execution E_i, all the bad nodes of layer i become good, while all the bad nodes in layers $j > i$, remain bad.
Proof
Full Reversal Algorithm

- Any bad node not adjacent to a good node will remain in the same (bad) node-state after execution E_i.

 - Node-state: directions of its incident links

Each neighbor node is bad in state I:

\Rightarrow Each of them reverses in E_i

\Rightarrow v also reverses in E_i

\Rightarrow Reversals leave the directions the same
Proof: Full Reversal Algorithm

- Bad nodes of layer i become good:
 - Nodes connected with an incoming link to a good node
 - Nodes connected with an outgoing link to another node in layer i
Proof
Full Reversal Algorithm

- Bad nodes in layers $j > i$ remain bad.
Lemma: Layer $j+1$ becomes layer j after execution E_i (in the new state).

Proof:
- All bad nodes of layer i become good and bad nodes in other layers remain bad.
- All bad nodes in layers $j>i$ remain in the same node-state.
Back to our example
Full Reversal Algorithm

After execution E_1

Layer

Reversals per node 1 1 1 1
Back to our example

Full Reversal Algorithm

- After execution E_2

<table>
<thead>
<tr>
<th>Layer</th>
<th>Reversals per node</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
</table>

Diagram showing a network with layers labeled 1, 2, and 3, and arrows indicating the direction of reversals.
Back to our example
Full Reversal Algorithm

- After execution E_3

Layer

Reversals per node

1 2 3

1 2

3 3 3
Back to our example

Full Reversal Algorithm

After execution E_4

Layer

Reversals per node

1 2 3 4 4
Back to our example

Full Reversal Algorithm

After execution E_5

Reversals per node

1 2 3 4 5
Number of Reversals

Full Reversal Algorithm

Back to our question: how many times do the bad nodes reverse?

Layer

<table>
<thead>
<tr>
<th>Layer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversals per node</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Number of Reversals
Full Reversal Algorithm

- Every bad node reverses in each execution exactly one time.
- Each node in layer 1 became good after 1 reversal. Each node in layer 2 needed 2 reversals.

=> Each node in layer i needs i reversals before it becomes a good node.

- Graph has n bad nodes
- Layer i has n_i nodes
Number of Reversals

Full Reversal Algorithm

⇒ Number of reversals: \(n_1 \cdot 1 + n_2 \cdot 2 + n_3 \cdot 3 + n_4 \cdot 4 + n_5 \cdot 5 \)

⇒ Trivial upper bound for \(n \) bad nodes: \(O(n^2) \)
Upper Bound
Full Reversal Algorithm

- We get an upper bound for the number of reversals in the full reversal algorithm:

For any graph with an initial state with n bad nodes, the full reversal algorithm requires at most $O(n^2)$ work and time till stabilization.

- We will now show that these bounds are tight
There is a graph with an initial state containing \(n\) bad nodes such that the full reversal algorithm requires \(\Omega(n^2)\) work until stabilization.

- Each node in layer \(i\) will reverse \(i\) times
- Sum of all reversals is \(1+2+3+...+n = n(n+1)/2 = \Omega(n^2)\)
There is a graph with an initial state containing n bad nodes such that the full reversal algorithm requires $\Omega(n^2)$ time until stabilization.

- $\left\lceil n/2 \right\rceil + 1$ layers
- First $\left\lfloor n/2 \right\rfloor$ layers contain 1 node each
 last layer contains $\left\lceil n/2 \right\rceil$ nodes
- sum of all reversals is $1 + 2 + \ldots + \left\lfloor n/2 \right\rfloor + \left(\left\lfloor n/2 \right\rfloor + 1\right) \cdot \left\lfloor n/2 \right\rfloor = \Omega(n^2)$
Partial Reversal Algorithm
Performance Analysis

- One might expect that the partial reversal algorithm needs less reversals in the worst case than the full reversal algorithm. Is this true?

- Idea: group the bad nodes in levels.
Bad node v is in level i, if the shortest undirected path from v to a good node has length i.

h_{max} h_{min}
Some Reversals later
Partial Reversal Algorithm

Upper bound on height h^{max}

Level 1 2 3 4 5

+1 +2 +3 +4 +5
Number of Reversals
Partial Reversal Algorithm

Upper bound on number of reversals
\[h^{\text{max}} - h^{\text{min}} = h^* + 1 + 2 + 3 + 4 + 5 \]

Each reversal increases the height by at least 1.
A bad node needs in the worst case $h^* + n$ reversals.

We have n bad nodes:

$\Rightarrow O(n \cdot h^* + n^2)$
For any initial state with n bad nodes, the partial reversal algorithm requires at most $O(n \cdot h^* + n^2)$ work and time until the network stabilizes.

- Problem: $h^* (= h_{\text{max}} - h_{\text{min}})$ may be arbitrarily large
There is a graph with an initial state containing n bad nodes, such that the partial reversal algorithm requires $\Omega(n \cdot h^* + n^2)$ work (time) until stabilization.
Deterministic Reversal Algorithms

Definition

- Defined by a “height increase” function g.
- Heights of different nodes are unique.
- Node v is sink with height h_v and adjacent nodes $v_1, v_2, ..., v_d$ with heights $h_1, h_2, ..., h_d$.
- v’s height after reversal is $g(h_1, h_2, ..., h_v)$.
- \Rightarrow Full and partial reversal algorithms are deterministic.
There is a graph with an initial state containing n bad nodes such that any deterministic reversal algorithm requires $\Omega(n^2)$ work (time) until stabilization.

\Rightarrow Full reversal algorithm is optimal in the worst case, while the partial reversal algorithm is not!
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal
- Equivalence of Executions
- Performance Analysis
- Results
- Conclusion
Results

- Full reversal algorithm requires $O(n^2)$ work and time ($n =$ nodes which have lost the routes to the destination)

- Partial reversal algorithm requires $O(n \cdot h^* + n^2)$ work and time ($h^* =$ nonnegative integer)

- For every deterministic link reversal algorithm, there are initial states which require $\Omega(n^2)$
Overview

- Link Reversal Routing Algorithms
 - Full Reversal
 - Partial Reversal
- Equivalence of Executions
- Performance Analysis
- Results
- Conclusion
Conclusion

- Full reversal outperforms partial reversal algorithm in the worst case.
- Full reversal is optimal while the partial reversal algorithm is not.
- Number of reversals only depends on the number of bad nodes.
- Is there a variation of the partial reversal algorithm with $O(n^2)$ in the worst case?
- Partial reversal better in the average case?
- Analysis of non-deterministic algorithms (TORA)
- Algorithms only suited for connected graphs
- What about >1 destinations?
Thanks for your attention!

Questions