
Principles of Distributed Computing
Roger Wattenhofer

9 Graph Algorithms

9.1 Independent Set

Definition 9.1 (Independent Set)We are given a graphG = (V, E). An independent set is a subset
of nodesU ⊆ V , where no two nodes inU are adjacent. An independent set is maximal if no node
can be added without violating independence. An independent set of maximum cardinality is called
maximum.

Remarks:

• In this section we concentrate on the maximal independent set (MIS) problem.

• Computing a MIS sequentially is easy. Scan the nodes in arbitrary order. If a nodeu does not
violate independence, addu to the MIS. If the nodeu does violate independence, discardu.

• Computing amaximumindependent set is hard. It is the same problem as maximum clique on
the complementary graph. Both problems are NP-hard, and in fact not approximable within
n1/2−ε.

Algorithm 9.2 (Slow MIS) Nodes have unique identifiers. A node with identifieru must join the
MIS if all neighbors with larger identifiers have decided not to join.

Remark:

• Not surprisingly the slow algorithm is not better than the sequential algorithm in the worst case,
because there might be one single point of activity at any time. Specifically:

Theorem 9.3 (Analysis)Algorithm 9.2 features time complexityO(n) and message complexityO(|E|).

Remarks:

• There is a relation between independent sets and node coloring (Chapter 1), since each color
class is an independent set, however not a MIS. Starting with a good coloring, one can easily
derive a MIS algorithm by first choosing all nodes of color 1, and then (for each color in parallel
since there is no conflict) adding as many nodes as possible. Thus the following corollary holds:

Corollary 9.4 Given a coloring algorithm that needsC colors and runs in timeT , we can construct
a MIS in timeC + T .

Remarks:

• Using Theorem 1.23 and Corollary 1.24 we get a distributed deterministic MIS algorithm for
trees and for bounded degree graphs with time complexityO(log∗ n).

1



• With a lower bound argument one can show that the deterministic MIS algorithm for rings is
asymptotically optimal.

• Using the Remark of Corollary 1.24 we get a distributed deterministic MIS algorithm for ar-
bitrary graphs with time complexityO(∆ · log n). Is there a faster (if necessary: randomized)
algorithm? Yes! See below. (Note that this algorithm is not identical with the algorithm in
Peleg’s book.)

Algorithm 9.5 (Fast MIS) The algorithm operates in synchronous rounds, grouped into phases. A
single phase is as follows:

1) Nodev marks itself with probability 1
2d(v)

, whered(v) is the current degree ofv.

2) If no higher degree neighbor ofv is also marked, nodev joins the MIS. If a higher degree
neighbor ofv is marked, nodev unmarks itself again. (If the neighbors have the same degree,
ties are broken arbitrarily, e.g. by identifier).

3) Delete all nodes that joined the MIS and their neighbors (that cannot anymore join the MIS).

Lemma 9.6 (Joining MIS) A nodev joins the MIS in round 2 with probability 1
4d(v)

or more.

Proof. Let M be the set of marked nodes in round 1. LetH(v) be the set of neighbors ofv with
higher degree, or same degree and higher identifier. We have

Pr[v /∈ MIS|v ∈ M ] = Pr[∃w ∈ H(v), w ∈ M |v ∈ M ]

≤ ∑

w∈H(v)

Pr[w ∈ M ] =
∑

w∈H(v)

1

2d(w)

≤ ∑

w∈H(v)

1

2d(v)
(becaused(v) ≤ d(w))

≤ d(v)

2d(v)
=

1

2

Then,

Pr[v ∈ MIS] = Pr[v ∈ MIS|v ∈ M ] · Pr[v ∈ M ] ≥ 1

2

1

2d(v)
.

uu

Lemma 9.7 (Good Nodes)We call a nodev good if
∑

w∈N(v)
1

2d(w)
≥ 1/6. A good node will be

removed in round 3 with probability at least1/36.

Proof. Let nodev be good. Intuitively, good nodes have lots of low-degree neighbors, thus chances
are high that one of them goes into the independent set, in which case nodev will be removed in round
3.

Case 1: There is a neighborw ∈ N(v) with degree at most 2. With Lemma 9.6 the probability that
nodew joins the MIS is at least 1/8.

2



Case 2: All neighbors have at least degree 3. For any neighborw of v we have1/2d(w) ≤ 1/6.
Since

∑
w∈N(v)

1
2d(w)

≥ 1/6 there is a subset of neighborsX ⊆ N(v) such that

1

6
≤ ∑

w∈X

1

2d(w)
≤ 1

3
.

We can now bound the probability that nodev will be removed. Again, if a neighbor ofv joins the
MIS in round 2, nodev will be removed in round 3, we have:

Pr[v will be removed] ≥ Pr[∃u ∈ X, u ∈ MIS]

≥ ∑

u∈X

Pr[u ∈ MIS]− ∑

u,w∈X,u6=w

Pr[u ∈ MIS andw ∈ MIS]

For the last inequality we used the inclusion-exclusion principle truncated after the second order terms.
Let M again be the set of marked nodes after round 1. Then,

Pr[v will be removed] ≥ ∑

u∈X

Pr[u ∈ MIS]− ∑

u,w∈X,u 6=w

Pr[u ∈ M andw ∈ M ]

≥ ∑

u∈X

Pr[u ∈ MIS]− ∑

u∈X

∑

w∈X

Pr[u ∈ M ]Pr[w ∈ M ]

≥ ∑

u∈X

1

4d(u)
− ∑

u∈X

∑

w∈X

1

2d(u)

1

2d(w)

≥ ∑

u∈X

1

2d(u)

(
1

2
− ∑

w∈X

1

2d(w)

)
≥ 1

6

(
1

2
− 1

3

)
=

1

36
.

uu

Remark:

• It would be nice if many nodes are good in each phase. Unfortunately this is not the case: In a
star-graph, for example, only the center node is good.

Lemma 9.8 (Good Edges)An edge is good if one of its endpoints is good; else the edge is bad. At
any time at least half of the edges are good.

Proof. Direct each edge towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). We need a little helper Lemma before we can continue with the proof.

Lemma 9.9 A node is bad if it is not good. A bad node has outdegree at least twice its indegree.

Proof. Assume for the sake of contradiction, that a bad nodev does not have outdegree at least twice
its indegree. In other words, at least one third of the neighbor nodes (setS) have degree at mostd(v).
But then ∑

w∈N(v)

1

2d(w)
≥ ∑

w∈S

1

2d(w)
≥ ∑

w∈S

1

2d(v)
≥ d(v)

3

1

2d(v)
= 1/6

3



which is the definition forv being good – a contradiction. uu

With Lemma 9.9 the number of edges directed into bad nodes is at most half the number of edges
directed out of bad nodes. Thus, the number of edges directed into bad nodes is at most half the number
of edges. Thus, at least half of the edges are directed into good nodes. Since these edges are not bad,
they must be good. uu

Theorem 9.10 (Analysis)Algorithm 9.5 terminates in expectedO(log n) time.

Proof. With Lemma 9.7 a good node (and therefore a good edge!) will be deleted with constant
probability. Since half of the edges are good (Lemma 9.8) a constant number of edges will be deleted
in each phase. AfterO(log |E|) phases= O(log n) rounds, all edges are deleted. uu

Remark:

• This algorithm/proof is a mixture of an algorithm by Luby, an analysis method stolen from
Israeli and Itai (developed for the related matching problem), and everything put together by my
wife. Surprisingly there have been half a dozen papers published after the original work (1986),
with worse running times. In 2002, for example, there was a paper at PODC with linear running
time! In the PODC paper the authors write that they improve on a DISTCOMP 1994 journal
paper that does matching inO(n3) time, for trees only...

9.2 Matching

Definition 9.11 (Matching) We are given a graphG = (V, E). A matching is a subset of edges
M ⊆ E, such that no two edges inM are adjacent (or, alternatively: where no node is adjacent
to two edges in the matching). A matching is maximal if no edge can be added without violating
the constraints. A matching of maximum cardinality is called maximum (or minimum maximal). A
matching is perfect if each node is adjacent to an edge in the matching.

Remarks:

• A maximum matching can be found in polynomial time (Blossom algorithm by Jack Edmonds),
and is also easy to approximate (in fact, already any maximal matching is a 2-approximation).

• An independent set algorithm is also a matching algorithm: Let graphG = (V, E) be the graph
for which we want to construct the matching. GraphG′ is as follows: for every edge inG there
is a node inG′; two nodes inG′ are connected if the respective edges inG are adjacent. A
(maximal) independent set inG′ is a (maximal) matching inG, and vice versa.

• The Algorithm 9.5 directly gives aO(log n) algorithm for maximal matching.

4


