
SS 2006 Prof. R. Wattenhofer / Prof. P. Widmayer / T. Locher / R. Flury

Principles of Distributed Computing

Exercise 3: Sample Solution

1 License to Kill

a) We use a variant of the Echo Algorithm 3.7. A node (i.e. an agent in the hierarchy) matches
up all (except for at most one) of his children. If the node or one of its children is left out,
then the node sends a request to “match” upwards in the hierarchy. Otherwise, it sends a
“no match” and that subtree is done. We give an asynchronous, uniform algorithm below.

Algorithm 1 Edge-Disjoint Matching
1: wait until received message from all children
2: while remain ≥ 2 requests (including myself) do
3: match any two requests
4: end while
5: if exists leftover request then
6: send up “match”
7: else
8: send up “no match”
9: end if

When a node v sends a “match” request to its parent u, then the edge {u, v} will be used
only once since there will be only one request in the subtree rooted at v.

b) Let T be the tree with n nodes. Assuming each message takes at most 1 time unit, then the
time complexity of Algorithm 1 is in O(depth(T )) since all the requests travel to the root
(and back down if we inform the agents of their assigned partners). We can assume that
local computation (matching) is negligible. On each link, there are at most 2 messages: 1
that informs the parent whether a match is needed and optionally 1 more to be informed by
the parent of the match partner. So there are a total of at most 2(n− 1) messages.

2 License to Distribute

a) Again we apply an echo-style algorithm where a node locally balances the documents as
much as possible. For each node v we can define

balance(v) := have(v)− need(v)

where have(v) is the total number of documents and need(v) is the number of nodes in the
subtree rooted at v. Each node then computes and sends this balance to its parent. Again
the algorithm is asynchronous and uniform. Abstractly we refer to a document as a token.
When we gather the balance information from the children, they implicitely also send along
any extra tokens they might have.



Algorithm 2 Token Distribution for node v

1: wait until received balance from all children
2: balance(v) := 0
3: for each child c do
4: balance(v) := balance(v) + balance(c)
5: end for
6: balance(v) := balance(v) + tokens(v) - 1
7: send up balance(v)
8: if balance(v) < 0 then
9: wait to receive needed tokens from parent

10: end if
11: redistribute tokens among children

b) The time complexity is in O(depth(T )) analogous to Exercise 1. If we assume that we can
(physically) send all the tokens in one message, then again there is one message upwards for
each link and optionally one downwards with the missing tokens. Thus there are at most
2(n− 1) messages.

2


