Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
SS 2006

Principles of Distributed Computing Exercise 4

1 Bad Queues in a Mesh

In Section 4.2, Remark 2 states that the greedy algorithm on a mesh might need queues in the order of m (on an $m \times m$ mesh). Can you find an instance of a one-to-one routing problem where the queue size gets really big (in the sense of as close to m as possible)?

2 Good Queues in a Mesh

Prove that the time complexity for random destination routing is in $\mathrm{O}(m)$, see Remark 1 of Theorem 4.10. To that end, show that the probability that a single column contains $2 e m$ destination packets is "really small" and finish the proof.

