
Causality, consistency and logical time in 
distributed computations

Presented by: Dominik Menzi

Papers by: Prof. Mattern

Mentor: Thomas Locher



2Seminar in Distributed SystemsWed, 26. Nov. 2008

Outline

 Synchronous, asynchronous, and causally ordered 
communication

 Vector time

 Detecting causal relationships in distributed computations

 Conclusion



3Seminar in Distributed SystemsWed, 26. Nov. 2008

Part 1: Synchronous, asynchronous, and 
causally ordered communication

 A formal definition of different types of computations is 
needed w.r.t. causality

 Model
 Processes form a distributed system
 Internal-, send- and receive-events
 Computation consists of local computations and messages
 reliable communication
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Types of computations

 A-computations
 send and receive events are asynchronous

 FIFO-computations
 channels have FIFO-property

 Causally ordered (NEW)
 S-computations

 send and receive events are synchronous
 message transmissions appear to be instantaneous
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Types of computations (contd.)

 Generally, no computation type is superior to the others
 S-computations can be simulated with A-computations and 

vice versa



6Seminar in Distributed SystemsWed, 26. Nov. 2008

Def: Causality relation

 (s,r) C
i
 x C

j
: s corresponds to r

 AS1: If a    
i
 b, then a    b

 AS2: (s,r) , then a    b

 AS3: If a    b and b    c, then a    c
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Def: A-computations

 Processes P
1
...P

n
 with a tuple C=(C

1
...C

n
) of local 

computations

 A set of corresponding send and receive events for which 
the causality relation holds
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Def: FIFO-computations

 Additionally, for all (s,r) and (s',r') 
s ~ s' r ~ r'  s    s'  r    r'
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Def: CO-Computations

 Additionally, for all (s,r) and (s',r') 
r ~ r'  s    s'  r    r'
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Characterizations of CO-computations

 Message ordered:

s    s'  (r'    r)

 Empty Interval:

for each pair (s,r)  the open interval

<s,r> = {x  C: s    x    r} is empty

FIFO-computation
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Characterizations of CO-computations (contd.)

 CO-computations: triangle inequality:
a computation is CO iff no message is bypassed by a chain 
of other messages

 CO-computations: Vertical message arrow criterion
A computation C is CO iff for every m in C there exists a 
space-time diagram for C such that m can be drawn as a 
vertical message arrow and no arrows go from right to left
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Def: RSC-computations

 RSC-computations: Realizable with Synchronous 
Communication

 A computation is called RSC if there exists a non-
separated linear extension of (C,   )
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Characterizations of RSC-computations

 Crowns: A crown is a sequence of pairs of corresponding 
send and receive events such that
s

1
    r

2
, s

2
    r

3
, ... , s

k-1
    r

k
, s

k
    r

1

 A computation is RSC iff it contains no crown
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Characterizations of RSC-computations (contd.)

 All message arrows in a diagram can be drawn vertical

 RSC-computations are equivalent to S-computations
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Informal view:
A-computations and S-computations

 S-computations are often regarded as a special case of A-
computations (A-computations with empty channels)

 Proofs of algorithms for A-computations hold with rules for 
S-computations

 (but algorithms could deadlock in synchronous case)
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Hierarchy of computations

 The paper shows a hierarchy of computations with different 
characteristics: synchronous, asynchronous, FIFO, 
causally ordered

S-computations  CO-computations  FIFO-computations 
A-computations
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Hierarchy

S-computation

RSC

No crown

Vertical message
arrows criterion

Empty
Interval

Message
Ordered

Vertical message
arrow criterion

FIFO
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Termination detection algorithm revisited

 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring
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 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring
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Part 2: Vector time

 Calculation of global state in a system without real-time 
clocks

 Calculate potential causality between events.

 One can try to simulate a synchronous system on an 
asynchronous system

 ... simulate global time
 ... simulate global state

and build algorithms on top
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Virtual time

 Simulate global time by Lamport:
 Every process stores the „global time“
 Before a send event, a process increases its value of the 

global time and attaches the new value to the message
 If a process receives a message with a timestamp attached 

that is greater than its own value, it updates its local clock
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Lamport Time

 Insufficient in some cases, it loses information by mapping 
events to integers:

 Events happening at the same time can get different 
timestamps...
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Cuts

 Subset of events; Graphically, a zigzag line which cuts the 
diagram into two parts

 Cuts the diagram into past and future
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Consistent Cuts

 A Cut is consistent if every message received was sent
 Inconsistent cuts yield „invalid“ space-time diagrams

 Can be seen as an instant in time
 One could use a cut to compute a global state
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Vector Time

 Every process has a local clock
 Before a receive- or send-event a process increases its 

local clock
 Every process saves the most recent values it knows from 

all processes in a vector V
i

 A process attaches its local vector to the message
 If a process receives a message it updates its local vector
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Properties of Vector Time

 The lattice of consistent cuts and the lattice of time vectors 
are isomorphic

 Vector time is able to model concurrency
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Minkowski's space-time

 Maybe a better model of time than the „standard“ model
 Event P can only affect event b if b lies in the future light 

cone of P

 Close analogy to vector time
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Snapshot algorithm

 P
i
 wants to request a global snapshot

 P
i
 fixes a time s = V

i
 + (0,...,0,1,0,...,0)

 P
i
 broadcasts s to all other processes and freezes until it 

knows that all other processes know s

 P
i
 „ticks“ again, takes a local snapshot and broadcasts a 

dummy message, so all processes advance their clocks to 
some value ≥ s

 If a process' local clock becomes ≥ s, it takes a local 
snapshot and sends it to P

i



31Seminar in Distributed SystemsWed, 26. Nov. 2008

Snapshot algorithm (contd.)

 The algorithm can be made much simpler and more 
efficient
 External process
 No need for whole vectors to be sent
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Part 3: Detecting Causal Relationships in 
Distributed Computations

 In Search of The Holy Grail
 Debugging
 Consistent recovery
 Detecting deadlocks
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Causal History

 Assign complete history to each event
 Too expensive

 Can be reduced to vector time
 Lamport time does not characterize causality
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Efficient Vector time

 Attaching vector time to each message is unacceptable
 Vector timestamps can become large

 Typically, only a few processes communicate directly
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Efficient Vector time (contd.)

 Store LS (last sent) and LU (last update)

 FIFO is required
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The size of vector time

 Unfortunately, causal order is in general of order N
 Application of vector time is substantially limited
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Realizations for Offline Analysis

 Depth-first search algorithm to get complete causal history
 Each event has at most 2 direct predecessors

 Store direct dependencies of each event

 Breadth-first search to get vector time
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Concurrency Regions

 Regions of events which share the same causal past and 
future

 Characterizing causality is reducible to characterizing 
concurrency
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Global predicates

 Important for debugging
 Not all observers of a computation establish the truth for a 

given predicate
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Observers

 Report every event to an external observer
 Use causal delivery protocol

 Preserves causality relation

 All observations are valid
 One observer may claim that a predicate has been 

established while another claims that the predicate wasn't 
satisfied during the computation
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Observers (contd.)
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Possibly and Definitely

 Possibly: There is an instant in an observation at which the 
predicate holds

 Definitely: In every complete observation there is an instant 
at which the predicate holds

 Stable predicates: A predicate which eventually in every 
observation
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Detecting definitely

 Based on vector time

 Compute the set A
i
 of intersection points of level i for each 

level; i  {0...l}, l=|E|
 All intersection points in A

k-1
 are accessible by a path on which the 

predicate is never satisfied on lower levels

 If A
l
 is empty, the predicate definitely holds

 Similar for Possibly

 Costly
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More efficient algorithms

 Decomposable predicates are easier to detect
 Establish parts of the global predicate
 Go into one direction until parts of the predicate are 

satisfied
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Computation replay

 Record non-deterministic events
 Replay with recorded decisions
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Currently

 Evaluate predicate on the real-time order of the events
 Must use a powerful observer
 Intrusive: block at each invalidating event

 Might miss some predicates
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Behavioral patterns

 Classes of events, each event belongs to a class
 Combine classes to patterns: A happens between B and C

 What timestamps should be assigned to combined events?
 (A||B) C
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Conclusion

 Hierarchy of computation types
 Vector time is interesting

 limited application

 Detection requires much effort
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Questions?
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