

Catching Elephants with Mice

Sparse Sampling for Monitoring Sensor Networks

S. Gandhi, S. Suri, E. Welzl

- Introduction
- VC-Dimension and ε-nets
- Catching Elephants ...
 - ... in Theory
 - ... in Practice
- Simulation Results
- Conclusion & Discussion

Introduction

- VC-Dimension and ε-nets
- Catching Elephants ...
 - … in Theory
 - ... in Practice
- Simulation Results
- Conclusion & Discussion

NIN REAL PROPERTY OF

Introduction

- Sensor Networks
 - Ideally: tiny, inexpensive, allowing real-time and finegrained monitoring
 - Applications
 - Mostly surveillance or environmental monitoring
 - e.g. tracking pollution level in a habitat
- Issues
 - Local and temporal variations
 - Natural faults, adversarial attacks

Introduction – Our Goal

- Detect significant events
 - Monitoring only a small subset of all nodes
 - Using a scheme that scales relatively
- Estimate the size of these events
- Terminology
 - Elephants: "large" events, defined by what fraction ε of the network is affected
 - Mice: the monitoring set we use to detect ("catch") these elephants

Introduction – Assumptions

- No low level issues
 - Reliable communication from nodes to base station
 - Idealized sensing
- Base station knows locations of all sensors
 - But no assumptions over the distribution
- At most one event at any time
- Event-geometry can be described in "nice" ways
 - \rightarrow Vapnik-Chervonenkis dimension

- Introduction
- VC-Dimension and ε-nets
- Catching Elephants ...
 - … in Theory
 - ... in Practice
- Simulation Results
- Conclusion & Discussion

UNRITED BURGE

VC-Dimension

- Why is a circle simpler than a rectangle?
- (X, R) is called a range space
 - X is a ground set
 - R is a set of subsets (ranges) of X
- Definitions
 - A ⊆ X is shattered by R if all possible subsets of A can be obtained by intersecting A with an r ∈ R
 - The VC-Dimension of (X, R) is the cardinality of the largest set A that can be shattered by R

VC-Dimension

- Range spaces with infinite VC dimension
 e.g. if R is the set of all convex polygons
- Relevance for our scheme
 - We will see that we can choose a set of $O\left(\frac{d \log d}{\varepsilon} \log \frac{d \log d}{\varepsilon}\right)$ mice for our scheme to work
 - Thus for events that can be approximated by simple geometric shapes of **constant** VC-dimension the sample size is $O(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon})$

ε-nets

Definition

- $B \subseteq X$ is an ϵ -net for X if an event $r \in R$ that affects $\geq \epsilon |X|$ nodes also affects B (i.e. $r \cap B \neq \emptyset$)
- Construction
 - If we choose $m \ge \max(\frac{8d}{\varepsilon}\log\frac{8d}{\varepsilon}, \frac{4}{\varepsilon}\log\frac{2}{\delta})$ nodes from the network at random, we will, with probability of (1δ) , have an ε -net
 - $\rightarrow O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon}\right)$ nodes

ε-nets

- Looking at the definition, ε-nets seem to be just the right tool for our problem
- Two major drawbacks if applied directly
 - False alarms
 - No size estimation
- Using ε-nets in another way, we can remedy both problems without increasing the asymptotic size

- Introduction
- VC-Dimension and ε-nets
- Catching Elephants ...
 - ... in Theory
 - ... in Practice
- Simulation Results
- Conclusion & Discussion

NINITAL NUMBER OF

Catching Elephants in Theory

- The symmetric difference
 - $\mathsf{D}_1 \oplus \mathsf{D}_2 := (\mathsf{D}_1 \cup \mathsf{D}_2) \setminus (\mathsf{D}_1 \cap \mathsf{D}_2)$
- If (X, R) has VC dimension d
 - $\mathsf{R'} \coloneqq \{\mathsf{r}_1 \oplus \mathsf{r}_2 \mid \mathsf{r}_1, \mathsf{r}_2 \in \mathsf{R}\}$

- Then (X, R') has VC dimension $d' := O(d \log d)$
- Now we can use the following algorithm
 - S: the set of all sensors in our network
 - d: the maximum VC dimension of the elephants
 - ε: the fraction that defines if an event is an elephant

Catching Elephants in Theory - Algorithm

- CatchElephants(S, d, ε)
 - 1. $d' \coloneqq O(d \log d)$
 - 2. Construct $\varepsilon/4$ -net M for S (the mice)
 - w.r.t. the symmetric difference ranges of dimension d'
 - 3. Let $T \subseteq M$ be the "dead mice"
 - 4. Compute a disk D
 - containing T and excluding $M \setminus T$
 - 5. $K := |S \cap D|$ sensors lie inside D
 - If $K \ge 3\epsilon n / 4$, then the event is an elephant of size K
 - Otherwise the event is not an elephant

Catching Elephants in Theory - Essence

- Constructing the special $\epsilon/4$ -net
 - The number of nodes in $\mathrm{D}\oplus\mathrm{D}^*$ is at most $\epsilon n/4$
 - \rightarrow Size approximation error of $\pm \epsilon n/4$
- $\hfill \label{eq:K}$ Checking if $\hfill \hfill \geq 3\epsilon n \, / \, 4$
 - Two-sided guarantee
 - Every elephant is reported
 - The algorithm **never** reports events of size $\le \epsilon n/2$
 - False alarms only for events of size $(\epsilon n/2, \epsilon n)$
 - This is the approximation gray zone

Catching Elephants in Practice

- Estimating Theoretical Pessimism
 - Determine empirically what's "good enough" in practice
- Redundancy-aware Sampling
 - Choose the mice not too close to eachother

Lake (2500 nodes)

Catching Elephants in Practice

NO ROBINSTON

- Introduction
- VC-Dimension and ε-nets
- Catching Elephants ...
 - … in Theory
 - ... in Practice
- Simulation Results
- Conclusion & Discussion

NIN REAL PROPERTY OF

Simulation Results

- Parameters
 - 5 different networks with $n \in [1'000, 45'000]$
 - Geometries: circles, ellipses, axis-aligned rectangles
 - Event-size chosen randomly in [0.1n, 0.3n]
- 2000 events for each of the 15 pairs of datasets and event geometries → 30'000 tests
- Monitoring sets constructed by using Redundancy-aware sampling

Simulation Results

Simulation Results

Number of mice vs. total number of nodes

UT REAL TO BE AND ADDRESS OF

- Introduction
- VC-Dimension and ε-nets
- Catching Elephants ...
 - … in Theory
 - ... in Practice
- Simulation Results
- Conclusion & Discussion

NINITER CONTRACTOR

Conclusion

- The idea of using a random sample is not particularly novel
- Core contributions
 - Quantifying the sample size, using the VC dimension
 - Bridging the gap between theory and practice
- Key idea of the scheme
 - Using ε-nets w.r.t. symmetric difference ranges
 - two-sided guarantee and size estimation

Discussion – Personal Thoughts

- Interesting ideas
- Sometimes confusing
 - Mixing of asymptotic and plain terms
 - Some (core) details not explained too thoroughly
- Practical focus is notable
 - Why no simulations with polygons?
 - "Quantifying": Most terms are asymptotic
 - "Bridging the gap": Maybe the bridge was built from the theory side

Discussion – Your Turn

- Comprehension questions
- Your opinion
 - Do you think this results are useful?
 - Or do you see difficulties in practical applications?

How would you extend the scheme for a network with nodes of different importance?