

Security in Sensor Networks

Written by: Prof. Srdjan Capkun & Others Presented By : Siddharth Malhotra Mentor: Roland Flury

Mobile Ad-hoc Networks (MANET)

Mobile

Random and perhaps constantly changing

Ad-hoc

Not engineered

Networks

Elastic data applications which use networks to communicate

NIN HINS NIN MICH

MANET Issues

- Routing (IETF's MANET group)
- IP Addressing (IETF's autoconf group)
- Transport Layer (IETF's tsvwg group)
- Power Management
- Security
- Quality of Service (QoS)
- Multicasting/ Broadcasting
- Products

NI RITTE TO DE

Overview

- Part 1
 - Jamming-resistant Key Establishment using Uncoordinated Frequency Hopping
- Part 2
 - Secure Time Synchronization in Sensor Networks

200

. Na walka water water

Jamming-resistant Key Establishment using Uncoordinated Frequency Hopping

Motivation

- How can two devices that do not share any secret key for communication establish a shared secret key over a wireless radio channel in the presence of a communication jammer?
- Converting the dependency cycle to dependency chain.

No of the lot of the l

What are we destined to achieve?

Coordinated Frequency Hopping

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

Attacker Model

- A Sender
- **B Receiver**
- J Attacker

Goal of the Attacker

 Prevent them from exchanging information. Increasing (possibly indefinitely) the time for the message exchange in the most efficient

way.

Sender A is divided into small frequency channels. Receiver B has larger frequency channels as compared to A

Uncoordinated Frequency Hopping

M1	M2	M3	M4	M5	M6	M7	M8	M9	M10

•Each packet consists of :

•Identifier (id) indicating the message the packet belongs to

•Fragment number (i)

•Message fragment (Mi)

•Hash of the next packet $(h(m_{i+1}))$.

•Each packet consists:

•Identifier (id) indicating the message the packet belongs to

•Fragment number (i)

•Message fragment (Mi)

•Hash of the next packet (h(mi+1)).

UFH Message Transfer Protocol

- The protocol enables the transfer of messages of arbitrary lengths using UFH.
 - Fragmentation
 - Fragments the message into small packets
 - Hash Function is added
 - Transmission
 - A high number of repetitions (Sends Randomly)
 - Listens the input channels to record all incoming packets
 - Reassembly
 - Packets linked according to Hash Function

UNRY BARRIER

Security Analysis of the UFH Message Transfer Protocol

UFH Key Establishment

Stage 1 The nodes execute a key establishment protocol and agree on a shared secret key K using UFH. Stage 2 Each node transforms K into a hopping sequence, subsequently, the nodes communicate using coordinated frequency hopping.

200

MANADISTICATION OF

UFH key establishment using authenticated DH protocol

200

. Na walka water water

Diffie-Hellman Protocol for Key Exchange

UFH key establishment using authenticated DH protocol

UFH key establishment using authenticated DH protocol

Stage 2

Coordinated Frequency Hopping using the K_{AB}

200

NIN HINS NIN MICH

Results

$$P_j$$
 = Probability that a packet is Jammed
 C = Total no. of Channels
 l = no of packets
 N_j = exp. no. of required packets transmissions
 C_n = No. of channels for receiving
 C_m = No. of Channels for sending

- WERTER BERTER

1

Problems

- How does the receiver know that sender is about the send some data?
- How does the sender come to know that this packet is from this specific chain (not id) like if 5 packet is received at the receiver end and 4,6 not received? How come the receiver comes to know that the packet sent is legitimate?
- Data overflow?

NAMES IN COLUMN

Conclusion

- Coordinated Frequency Hopping has been achieved in presence of a jammer without the use of pre-shared keys for frequency hopping.
- Useful in many things like time synchronization

Motivation

- How to provide secure time synchronization for a pair or group of nodes (Connected Directly or Indirectly)?
- Synchronizing time is essential for many applications
- Security
- Energy Efficiency

NI REALIZATION OF

Sensor Node Clock

- Three reasons for the nodes to be representing different times in their respective clocks
 - The nodes might have been started at different times,

UT REAL PROPERTY OF

- The quartz crystals at each of these nodes might be running at slightly different frequencies,
- Errors due to aging or ambient conditions such as temperature

Attacker Model

- Two types of attacker models:
 - External Attacker: None of the nodes inside the network have been compromised
 - Internal Attacker: One or more nodes have been compromised, its secret key is known to the attacker

NIN BURNER BURNER

Sender-Receiver Synchronization

• A handshake protocol between a pair of nodes.

NIN HINS NIN MICH

Sender-Receiver Synchronization

Example

$$\delta = ((200 - 500) - (700 - 300)) / 2 = -350$$

d = ((200 - 500) + (700 - 300))/2 = 50

Sender (A) updates its clock by δ (Here -350)

MANAJANA MANA

External Attacker

- Three types in which attacker can harm the time synchronization:
 - Modifying the values of T2 and T3
 - Message forging and replay
 - Pulse delay Attack

200

MANADISTICATION OF

Pulse Delay Attack

Step1 \rightarrow T2 = T1 + d + δ Step2 \rightarrow T4'= T3 - d + δ

 $\delta = ((T2 - T1) - (T4' - T3))/2$ d = ((T2 - T1) + (T4' - T3))/2

SECURE TIME SYNCHRONIZATION

- Three types of synchronization have been discussed:
 - Secure Pairwise Synchronization
 - Secure Group Synchronization
 - Secure Pairwise Multi-hop Synchronization

NIN HINS NIN MICH

Message Authentication Code

-

Secure Pairwise Synchronization (SPS)

•Message integrity and authenticity are ensured through the use of Message Authentication Codes (MAC) and a key K_{ab} shared between A and B.

If d<= d* then clock offset (δ) else abort

Results

Experiment	Average error	Maximum error	Minimum error	Attack detection probability
Non Malicious	12.05 μ <i>s</i>	35 µs	1 µs	NA
Δ = 10 μs	19.44 µs	44 µs	1 µs	1 %
Δ = 25 μs	35.67 µs	75 µs	16 µs	82%

GROUP SYNCHRONIZATION

- 2 Types:
 - Lightweight Secure Group Synchronization
 - Resilient to External attacks only
 - Secure Group Synchronization
 - Resilient to External attacks as well as internal attacks (Attacks from compromised nodes)

NINITIAN CONT

Step 1

Lightweight Secure Group Synchronization (L-SGS)

Villen

34

Step 2

Lightweight Secure Group Synchronization (L-SGS)

T2, T3 (Every node which receives sync from G1)

Step 3

Lightweight Secure Group Synchronization (L-SGS)

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

Lightweight Secure Group Synchronization (L-SGS)

Lightweight Secure Group Synchronization (L-SGS)

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

- Secure Group Synchronization is resilient to both external and internal attacks
- We will make the use of tables (O_i for node G_i)

NI REALIZATION OF

1st two steps are the same as (L-SGS)

VILLEN

- NA WARTER CHICK

Run the SOM($\lfloor (N - 1)/3 \rfloor$) algorithm to compute C_{ij}

MANAJANA MANA

SOM

- Recursive Algorithm
- Each node uses other group members to compute C_{ij}

Results

Secure Pairwise Multi-hop Synchronization

- Enable distant nodes, multiple hops away from each other, to establish pairwise clock offsets
- Categorized into two types:
 - Secure Simple Multi-hop Synchronization
 - Secure Transitive Multi-hop Synchronization

UNRY HARDING

Secure Simple Multi-hop Synchronization

If d<= dM* then $\delta = ((T2-T1)-(T4-T3))/2$ else abort NAMES OF A DESCRIPTION OF A DESCRIPTIONO

Secure Transitive Multi-hop Synchronization

sync

Secure Transitive Multi-hop Synchronization

 \rightarrow G2 is synchronized to B

Secure Transitive Multi-hop Synchronization (STM)

MANA BARRENCH

 \rightarrow G1 is synchronized to G2

Secure Transitive Multi-hop Synchronization

 \rightarrow A is synchronized to G1

Conclusion

- SPS achieves the same synchronization precision on a pair of motes as the insecure time synchronization protocols. Even under a pulsedelay attack, SPS can keep the nodes in sync within 40µs.
- SGS is able to synchronize a group of four motes within50µs, even with 1 node used for internal attack
- SPS extended to STM.

UT REAL PROPERTY OF