
Declarative Routing

Seminar in Distributed Computing 08
with papers chosen by Prof. T. Roscoe
Presented by David Gerhard



Mittwoch, 29. Oktober 2008 2Seminar in Distributed Computing

Overview
 Motivation
 P2
 NDLog
 Conclusion
 Questions...?



Mittwoch, 29. Oktober 2008 3Seminar in Distributed Computing

Motivation
 Overlay networks are widely used today (p2p,...)
 Difficult to create and implement
 Not really extensible, not really reusable
 Declarative approach promises flexibility and compactness
 Declarative language enables static program checks for 

correctness and security
 Declarative networking is part of larger effort to revisit the 

current Internet Architecture



Mittwoch, 29. Oktober 2008 4Seminar in Distributed Computing

P2
 P2 is a system for the construction, maintenance and 

sharing of overlay networks, using:
 Declarative language
 Dataflow architecture
 Soft-state tables, streams of tuples
 Implemented in C++ using UDP

 Does resource discovery and network monitoring



Mittwoch, 29. Oktober 2008 5Seminar in Distributed Computing

Structure of a P2 Node



Mittwoch, 29. Oktober 2008 6Seminar in Distributed Computing

OverLog
 Based on Datalog(subset of Prolog) query language
 Specification of physical distribution (e.g. where tuples are 

generated, stored, sent)
 Direct translation into dataflow graphs



Mittwoch, 29. Oktober 2008 7Seminar in Distributed Computing

OverLog - Example
 [<ruleID> <head> :- <body>]

 P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).



Mittwoch, 29. Oktober 2008 8Seminar in Distributed Computing

OverLog – Ping Example

materialize(member, 120, infinity, keys(2)).

P0 pingEvent@X(X, Y, E, max<R>) :- periodic@X(X, E, 2),
member@X(X, Y, _, _, _), R := f_rand().

P1 ping@Y(Y, X, E, T) :- pingEvent@X(X, Y, E, _), T := f_now@X().

P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).

P3 latency@X(X, Y, T) :- pong@X(X, Y, E, T1), T := f_now@X() - T1.

mailto:f_now@X


Mittwoch, 29. Oktober 2008 9Seminar in Distributed Computing

Structure of a P2 Node



Mittwoch, 29. Oktober 2008 10Seminar in Distributed Computing

Dataflow



Mittwoch, 29. Oktober 2008 11Seminar in Distributed Computing

Dataflow
 Consists of nodes(elements)

 Selection, projection, join, group-by, aggregation
 Forms a directed dataflow graph
 Edges carries well structured tuples
 Arbitrary number of input/output ports per element
 Handles “network”

 Responsible for Sockets
 Packet scheduling
 Congestion control
 Reliable transmission
 Data serialization



Mittwoch, 29. Oktober 2008 12Seminar in Distributed Computing

Dataflow



Mittwoch, 29. Oktober 2008 13Seminar in Distributed Computing

Structure of a P2 Node



Mittwoch, 29. Oktober 2008 14Seminar in Distributed Computing

Planer
 Input: parsed OverLog
 Output: dataflow graph

 Adds network stack
 Uses “built in” elements (e.g. periodic, f_now), which are 

directly mapped to dataflow elements



Mittwoch, 29. Oktober 2008 15Seminar in Distributed Computing

Evaluation - Setting
 Using a P2 implementation of Chord DHT

 Configured to use low bandwidth
 Aiming at high consistency and low latency

 Tested on the Emulab testbed(100 machines)
 10 transit domains (100Mbps)
 100 stubs (10Mpbs)
 RTT transit-transit 50ms
 RTT stub-stub same domain 2ms



Mittwoch, 29. Oktober 2008 16Seminar in Distributed Computing

Evaluation – Results Static Test
 500-node static network, 96% lookups complete in <=6s
 About the same as the published numbers of MIT Chord



Mittwoch, 29. Oktober 2008 17Seminar in Distributed Computing

Evaluation – Results “Handling Churn”
 Churn = continuous process of node arrival&departure
 Low Churn(session time >=64min)

 P2 Chord does well
 97% consistent lookups
 Most of which under 4s

 High Churn(session time <= 16min)
 P2 Chord does not well
 42% consistent lookups
 84% with high latency

 MIT Chord
 99.9% consistent lookups, session time 47min
 High Churn mean lookup latency of less than 5s



Mittwoch, 29. Oktober 2008 18Seminar in Distributed Computing

Conclusion I
 Feasibility study
 Approach looks promising, but needs further work

 Further tests with other overlay networks
 Security

 Planner does not handle some constructs of OverLog
 Multi-node rule bodies
 Negation

 Combination of declarative language and dataflow graphs 
powerful, alternative: automaton

 Declarative language enables static program checks for 
correctness and security



Mittwoch, 29. Oktober 2008 19Seminar in Distributed Computing

Conclusion II
 OverLog is very concise (Chord in 47 rules)
 OverLog is “difficult”

 Not easy to read (Prolog is hard to read), but can be directly 
compiled and executed by P2 nodes

 Non-trivial learning curve
 No if-then-else
 No order of evaluation, everything is tested “in parallel”

 Could profit from multiprocessor environments

 OverLog Chord implementation not declarative enough
 Replace OverLog?



Mittwoch, 29. Oktober 2008 20Seminar in Distributed Computing

NDLog - Introduction
 Extends P2
 New declarative language NDLog

 Explicit control over data placement and movement
 Buffered/pipelined semi-naïve evaluation
 Concurrent updates of the network while running
 Query optimization
 Assumes not fully connected network graph, but assumes 

bidirectional links



Mittwoch, 29. Oktober 2008 21Seminar in Distributed Computing

NDLog
 Introduces new datatype address

 Address variables/constants name start with “@”
 First field in all predicates is the location address of the 

tuple (bold for clarity)
 Link relation are stored, representing the connectivity 

information of the queried network
 Link literal is a link relation in the body of a rule

 #link(@src,@dst,...)



Mittwoch, 29. Oktober 2008 22Seminar in Distributed Computing

NDLog II
 Rules with the same location specifier in each predicate, 

including Head, are called local rules
 Link-restricted rule

 exactly one link literal
 all other literals are located either at the Src or Dst of the link literal

 Every rule in NDLog is either a local rule or a link-restricted 
rule



Mittwoch, 29. Oktober 2008 23Seminar in Distributed Computing

NDLog - Example
 [<ruleID> <head> :- <body>]

 OverLog
 P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).

 NDLog
 SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C), P = 

f_concatPath(link(@S,@D,C), nil).



Mittwoch, 29. Oktober 2008 24Seminar in Distributed Computing

NDLog - Example

SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C),
. P = f concatPath(link(@S,@D,C), nil).
SP2: path(@S,@D,@Z,P,C) :- #link (@S,@Z,C1), 

path(@Z,@D,@Z2,P2,C2), C = C1 + C2,
. P = f concatPath(link(@S,@Z,C1),P2).
SP3: spCost(@S,@D,min<C>) :- path(@S,@D,@Z,P,C).
SP4: shortestPath(@S,@D,P,C) :- spCost(@S,@D,C),
. path(@S,@D,@Z,P,C).
Query: shortestPath(@S,@D,P,C).



Mittwoch, 29. Oktober 2008 25Seminar in Distributed Computing

Example



Mittwoch, 29. Oktober 2008 26Seminar in Distributed Computing

Centralized Plan Generation
 Semi-naïve fixpoint evaluation

 Any new tuples generated for the 1st time are used as input for the 
next iteration

 Repeated till a fixpoint is achieved (no new tuples generated)

 Does not work efficiently in Distributed Systems
 Next iteration on a node can only start when all other nodes have 

finished the iteration step and all new tuples have been distributed 
(Barrier)



Mittwoch, 29. Oktober 2008 27Seminar in Distributed Computing

Distributed Plan Generation
 Iterations are local at every node
 Non-local rules are rewritten that the body is computable at 

one node
 Buffered semi-naïve

 Buffers all incoming tuples during a iteration
 Handled in a future iteration

 Pipelined semi-naïve
 At arrival every tuple is used to compute new tuples
 Join operator matches each tuple only with older tuples (timestamp)
 Enables optimization on a per tuple basis



Mittwoch, 29. Oktober 2008 28Seminar in Distributed Computing

Semantics in Dynamic Network
 State of the network is constantly changing
 Queries should reflect the most current state of the network

 Continuous Update Model
 Updates occur very frequently, faster than the fixpoint is reached
 Query results never fully reflect the state of the network

 Bursty Update Model
 Updates occur in bursts
 Between bursts no updates
 Allows the system to reach a fixpoint



Mittwoch, 29. Oktober 2008 29Seminar in Distributed Computing

Centralized Semantics
 Insertion

 Handled by pipelined semi-naïve evaluation
 Deletion

 Deletion of a base tuple leads to the deletion of any tuples derived 
from it

 Updates
 A deletion followed by an insertion

 Works as well in Distributed Systems, as long as
 There are only FIFO links or
 All tuples are maintained as soft-state



Mittwoch, 29. Oktober 2008 30Seminar in Distributed Computing

Query Optimizations
 Traditional Datalog optimizations

 Aggregate Selections
 Magic Sets and Predicate Reordering

 Multi-Query Optimizations
 Query-Result Caching
 Opportunistic Message Sharing



Mittwoch, 29. Oktober 2008 31Seminar in Distributed Computing

Experiments
 Using modified P2, running 4 different shortest-path 

queries
 Running on a similar emulab testbed

 Results
 Aggregate Selection reduces communication overhead, periodic 

even more (by up to 29%)
 Magic sets and predicate reordering reduce communication 

overhead when only a limited number of paths are queried
 Multi-query sharing techniques demonstrate potential to reduce 

overhead when multiple queries are running concurrent
 On a network with bursty updates, incremental query evaluation can 

recompute paths at a fraction of the original costs



Mittwoch, 29. Oktober 2008 32Seminar in Distributed Computing

Conclusion
 NDLog has a clearer semantic than OverLog
 Relaxations overcome problems in asynchronous 

distributed settings
 Link restriction allows many optimizations
 Still no negation
 Usability?



Mittwoch, 29. Oktober 2008 33Seminar in Distributed Computing

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

