
Distributed Databases

Seminar in Distributed Computing 08
with papers chosen by Prof. D. Kossmann
Nico Waldispühl

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 2/47

 Goal: Overview over current state of ideas in cloud storage
by showing some selected aspects of three examples of
distributed systems

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 3/47

Content overview

 Introduction / Motivation
 How Amazon implemented a simple distributed database

service
 Relational database on top of simple distributed database

service
 How Google implemented a locking service
 Conclusion, References

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 4/47

Introduction

Conventional business (i.e. selling goods) bases on
physical objects:
 Mostly regional (if not, significant delay for delivery)

(transaction time: days)
 Handling restricted by physical laws: Only (small) finite

number of people in your shop at the same time, only finite
number of objects in stock.

 Slow (= manageable) reactions on success/failure (weeks)

> Plenty of time to react on a trend after noticing it!

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 5/47

Introduction

E-business (providing services) bases on virtual objects (i.e.
information):

 Available world-wide, technically the whole earth
population as potential customers (transaction time:
seconds)

 Success can come very fast (hours) i.e. by reviews in
online media generating a hype.

> Practically no time to react properly.
Thus: Success can kill!

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 6/47

Introduction

How to be prepared for a possible success of your e-
business?

 Try to anticipate the turnaround?
> Not reliable.

 Buy server infrastructure in advance?
> May be misinvestment if your idea doesn't pay.

 Just wait until the success comes and invest after?
> If you're offline for more than some hours, your
reputation is lost.

No way to manage instant success? Fortunately yes...

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 7/47

Cloud Computing (Utility Computing)

 'Outsourcing' computation, storage and network to a
service provider which leases them to the customer.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 8/47

Cloud Computing (Utility Computing)

 Service provider maintains data centers all over the world-
> Position of data ist never exactly clear-> Cloud

 For external observers: „Intelligence“ goes from the border
back into the net.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 9/47

Cloud Computing (Utility Computing)

Huge benefits. Such distributed services usually have these
properties:
Unlimited scalability (~)

 Datacenters designed for very large traffic
 Load balancing

Always available
 Heavily distributed -> fail safe

You only pay what you need/use
 Billing by consumed space/processortime.
 No need to operate own hardware

(Also various risks and downsides to consider; i.e. privacy, loss of control)

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 10/47

Cloud Computing (Utility Computing)

In theory already known some time. In practice evolved as by-
product of the dot-com bubble:

 Amazon (among others) heavily upgraded their data
centers around 2001/02

 New architectures lead to overcapacities.
 Parts of the infrastructure now leasable under the term

AWS – Amazon Web Services:
 EC2 – Elastic Compute Cloud
 S3 – Simple Storage Service
 SQS – Simple Query Service

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 11/47

How is such cloud storage implemented?

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 12/47

Dynamo: Amazon's internal solution

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 13/47

What is Dynamo?

 Amazons highly available distributed key-value store

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 14/47

Why key-value?

The low complexity of a key-value store leads to:
 Increased speed (No query engine)
 Better scalability (Load balancing is done easier)
 Better Maintainability

> Since many of Amazons services only save data by primary
key, more complex systems would be waste of resources.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 15/47

Dynamo characteristics

 High availability, reliability & performance
 Eventual consistency

 Applications using dynamo can trade off availability,
consistency, cost-effectiveness and performance by
choosing some system parameters on their own.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 16/47

What is dynamos
architecture like?

 Nodes choose
random number

 According to this number
they are positioned in a
ring

 (The reality is a bit
more complex: Each
physical node is divided to
multiple virtual nodes
in the ring)

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 17/47

How is data stored?

 A data items consists of a key and the data payload.
 The key is hashed -> 128 bit identifier.
 First node with position >= key hash is responsible

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 18/47

How is the data replicated?

 Applications can choose a value N
 Data is stored on first N healthy nodes

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 19/47

How maintain consistency among nodes?

 Dynamo uses a sloppy quorum system with two
parameters R and W

 R and W state the minimum of nodes to participate on a
successful Read or Write operation

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 20/47

How to deal with different data versions?

 Can be affected by choosing N,R,W accordingly
 Updates are replicated asynchronously
 Network partitions or node failures can lead to several

versions of the same data

->Dynamo uses vector clocks to reconcile multiple versions of
data. -> On each update of a data item, a vector clock
timestamp is added.

Vector clock timestamp: Version(List of NV-Pairs)
Node/Version-Pair: [Writing Node, Item Version]

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 21/47

How do these vector clocks work?

 Every write adds a version
tuple (a context)

 If there are:
 Two or more concurrent writes

from the same node, the
highest is taken

 Two or more concurrent writes
from different nodes, all of
them are returned

 A dataset is considered
reconciled if a node
updates such context

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 22/47

Does Dynamo perform well enough?

 According to Amazon people:
 No data loss event has ever occurred
 99.9995% of requests were successful (no time-out)
 Great adaptability with choosable parameters (N, R, W)
 Currently (2007) a couple of hundreds of nodes run without greater

problems. But: Tens of thousands of nodes problematic because of
the routing tables (hash mappings)

> To be introduced: Hierarchical extensions

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 23/47

S3: Amazons external solution

 People may want to use such store for their businesses
 A service similar to Dynamo is available for customers: S3
 Except for the parameters N,R,W pretty much the same

specification
 How can it be used for applications / web services that rely

on relational database schemes?

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 24/47

Building a Database on S3

Using S3 as backend for a database for web services:
 How is it implemented?
 Can it be made reliable?
 Does it pay?

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 25/47

What exactly is S3?

S3 is Amazons distributed key-value database service.
 Infinite store for single objects (size: [1, 5G] byte)
 Unlimited availability (No request is ever blocked!)
 Unlimited scalability

But:
 Only eventual consistency guaranteed!
 Cost per storage/time, transfer and # of transactions

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 26/47

How does S3 work conceptually?

 Objects in buckets, each identified by a URI
 Objects are byte containers
 Clients read and update objects / buckets by SOAP /

REST-based interface (structure similar to filesystem)

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 27/47

From local DBMS to S3-based DBMS

Since interface the same: Just exchange Disk with S3?

But....

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 28/47

Big trouble!!!

 Classical DB Engine updates often and early:
> Huge transaction costs!
> Slow (Latency)!

 S3 only guarantees eventual consistency
> clients may be overwriting other updates!

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 29/47

How to reduce transaction cost/latency?

 Add additional 'buffer'
layer. In distributed
databases this is called
paging and – contrary as to
what the example may
suggest – already widely
known:

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 30/47

Still some issues:

 Paging is nice but: If two or
more clients access pages
concurrently, data may be
lost.

 If a client waits too long
with writing back his buffer,
data may be lost if he
crashes.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 31/47

Meet SQS (Simple Query Service)

 Amazons distributed query service
 Availability, reliability and interface similar to S3

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 32/47

Meet SQS (Simple Query Service)

Functionality:
 Creating unlimited number of queues
 Adding messages (<= 8KB) to queues
 Checking for pending messages ,processed messages are

removed
 $0.01 per 10,000 requests (10x cheaper than S3)

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 33/47

Introducing commit protocols with SQS

 Every page has own PU (Pending updates) queue
 Clients write updates into queue
 PU are written into S3 ('checkpointing') perodically

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 34/47

Commit protocol with SQS cont'd

 Introducing a Lock Queue for every PU Queue to prevent
checkpoints being carried out by multiple enitites

 Log records/checkpoints are to be idempotent

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 35/47

How to deal with different data versions?

 Can be affected by requirements
 If you need:

 Low consistency (monotonic reads):
Using timestamps on pages

 High consistency (monotonic writes):
Using counters on pages -> order checkpoints

 More freshness:
Decrease checkpoint interval

 Data never gets lost
 If client crashes while processing checkpoints, updates

may be applied twice -> Since updates are idempotent, no
data loss happens.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 36/47

Does such DB on S3 pay?

 Cost per 1000 Transactions: Between 0.15 and 2.9 $
(according to level of consistency)

 Excellent accessibility and scalability
 Unfortunately not (yet) attractive for high-performance

transaction processing: too expensive

 Possible solution: Run application on EC2; no transaction
costs

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 37/47

Chubby: Googles internal lock service

 Purpose: Allow clients to...
 synchronize activities
 agree on basic information about environment

 Properties:
 Reliability, Availability
 Easy-to-understand semantics
 Coarse-grained locks (locks for electing a primary, not files)

 Before Chubby was deployed, Google apps used ad-hoc
methods or required operator intervention for primary
election => Chubby improved situation!

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 38/47

What is Chubbys architecture like?

 Chubby cell of usually 5 nodes
 Master is elected periodically
 Replicas point to Master
 Write requests of clients

are propagated to all
replicas > Ack if majority
of replicas has received it

 Read requests are served
by master alone

 Chubby exports
a file system with
additional services

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 39/47

How a to use Chubby to obtain a lock?

 A new file is generated on the Chubby cell. I.e.:
/ls/cell/resource

 If a client wishes to lock a ressource (or to elect a primary)
he connects to Chubby (session) and simply tries to
access the file:
open('/ls/cell/resource')

 If the client is successful, he will recieve the file handle.
 The file could now i.e. as well be used to hold the current

address of a primary
 (Locking mechanism is advisory!)

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 40/47

How it deals with fail-over?

 Replicas who fail are silently replaced
 If a master fails, remaining replicas re-elect master

instantly (usually in seconds) since they poll it frequently
 Clients who hold a session (which has a certain timeout)

enter a grace period. If there is a master again before it
expires, the continue the session

 Data is restored from replicas
 Memory state (sessions, handles, locks) is conservativly

reconstructed with the help of:
 Stored data on disk
 States obtained by clients
 Assumptions

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 41/47

How to deal with different data versions?

 In general: The version with more occurrences wins!

 There are potential faults with the use of locks due to
wrong versions:
 P1 requests Lock L and issues action R1
 P1 crashes and L is released
 P2 requests L and issues action R2 on same resource
 R1 arrives after R2

 Chubby provides a sequencer which holds information
about the current lock

 A server providing a locked resource can check if lock is
still valid

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 42/47

Experiences with Chubby?

 Performs as expected
 Pretty much instantly recovers from failures (most outages

were < 15s -> clients didn't even lose session)

 Developers didn't think of abuse, i.e. quota was lacking.
 Most of the clients use it as name server (since it deals

well with small TTL) and as repository for configuration
files.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 43/47

The papers in comparison

 Dealing about parts of distributed databases in different
levels. More right is more specialized.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 44/47

Conclusion: Dealing with inconsistencies?

 In distributed databases, accessibility, cost and
consistency are diametral.

 System architects have to carefully consider what
combination of properties is more important for the
applications running on a system

 Dynamo leaves this decision completly to the developer
with the parameters N, R, W

 The concept of DB on S3 is basically adaptable to different
needs by choosing the level of consistency (# of messages
exchanged with queues)

 The Chubby lock service is very specialized and has
therefore statical properties concerning the three attributes

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 45/47

References

The presentation was based mostly on these papers:
 Dynamo: Amazon’s Highly Available Key-value Store

Amazon.com, In SOSP 2007.
 Building a Database on S3

Matthias Brantner, Daniela Florescu, David Graf, Donald
Kossmann, Tim Kraska, In SIGMOD 2008.

 The Chubby lock service for loosely-coupled
distributed systems
Mike Burrows, Google Inc., In USENIX OSDI 2006.

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 46/47

References ...

Hyperlinks to the presented products:
 Amazons S3: http://aws.amazon.com/s3
 Amazons SQS: http://aws.amazon.com/sqs

Mi, 24. Oktober 2008 Seminar in Distributed Computing 08: Distributed Databases 47/47

