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ABSTRACT
The networking and distributed systems communities have recently
explored a variety of new network architectures, both for application-
level overlay networks, and as prototypes for a next-generation In-
ternet architecture. In this context, we have investigated declara-
tive networking: the use of a distributed recursive query engine as
a powerful vehicle for accelerating innovation in network architec-
tures [23, 24, 33]. Declarative networking represents a significant
new application area for database research on recursive query pro-
cessing. In this paper, we address fundamental database issues in
this domain. First, we motivate and formally define the Network
Datalog (NDlog) language for declarative network specifications.
Second, we introduce and prove correct relaxed versions of the tra-
ditional semi-naı̈ve query evaluation technique, to overcome fun-
damental problems of the traditional technique in an asynchronous
distributed setting. Third, we consider the dynamics of network
state, and formalize the “eventual consistency” of our programs even
when bursts of updates can arrive in the midst of query execution.
Fourth, we present a number of query optimization opportunities
that arise in the declarative networking context, including applica-
tions of traditional techniques as well as new optimizations. Last,
we present evaluation results of the above ideas implemented in our
P2 declarative networking system, running on 100 machines over
the Emulab network testbed.

1. INTRODUCTION
The database literature has a rich tradition of research on recursive

query languages and processing. This work has influenced com-
mercial database systems to a certain extent. However, recursion
is still considered an esoteric feature by most practitioners, and re-
search in the area has had limited practical impact. Even within
the database research community, there is longstanding controversy
over the practical relevance of recursive queries, going back at least
to the Laguna Beach Report [7], and continuing into relatively re-
cent textbooks [35].

In more recent work, we have made the case that recursive query
technology has a natural application in the design of Internet infras-
tructure. We presented an approach called declarative networking
∗UC Berkeley authors funded by NSF grants 0205647, 0209108, and 0225660, and a
gift from Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

that enables declarative specification and deployment of distributed
protocols and algorithms via distributed recursive queries over net-
work graphs [23, 24, 33]. We recently described how we imple-
mented and deployed this concept in a system called P2 [23, 33].
Our high-level goal is to provide a software environment that can
accelerate the process of specifying, implementing, experimenting
with and evolving designs for network architectures.

Declarative networking is part of a larger effort to revisit the cur-
rent Internet Architecture, which is considered by many researchers
to be fundamentally ill-suited to handle today’s network uses and
abuses [13]. While radical new architectures are being proposed
for a “clean slate” design, there are also many efforts to develop
application-level “overlay” networks on top of the current Internet,
to prototype and roll out new network services in an evolutionary
fashion [26]. Whether one is a proponent of revolution or evolution
in this context, there is agreement that we are entering a period of
significant flux in network services, protocols and architectures.

In such an environment, innovation can be better focused and ac-
celerated by having the right software tools at hand. Declarative
query approaches appear to be one of the most promising avenues
for dealing with the complexity of prototyping, deploying and evolv-
ing new network architectures. The forwarding tables in network
routing nodes can be regarded as a view over changing ground state
(network links, nodes, load, operator policies, etc.), and this view is
kept correct by the maintenance of distributed queries over this state.
These queries are necessarily recursive, maintaining facts about ar-
bitrarily long multi-hop paths over a network of single-hop links.

Our initial forays into declarative networking have been promis-
ing. First, in declarative routing [24], we demonstrated that recur-
sive queries can be used to express a variety of well-known wired
and wireless routing protocols in a compact and clean fashion, typ-
ically in a handful of lines of program code. We also showed that
the declarative approach can expose fundamental connections: for
example, the query specifications for two well-known protocols –
one for wired networks and one for wireless – differ only in the or-
der of two predicates in a single rule body. Moreover, higher-level
routing concepts (e.g., QoS constraints) can be achieved via simple
modifications to the queries. Second, in declarative overlays [23],
we extended our framework to support more complex application-
level overlay networks such as multicast overlays and distributed
hash tables (DHTs). We demonstrated a working implementation of
the Chord [34] overlay lookup network specified in 47 Datalog-like
rules, versus thousands of lines of C++ for the original version.

Our declarative approach to networking promises not only flexibil-
ity and compactness of specification, but also the potential to stat-
ically check network protocols for security and correctness proper-
ties [11]. In addition, dynamic runtime checks to test distributed
properties of the network can easily be expressed as declarative
queries, providing a uniform framework for network specification,
monitoring and debugging [33].



1.1 The Database Research Agenda
In our earlier declarative networking proposals, we focused pri-

marily on addressing problems in networking and distributed sys-
tems. In doing so, we set aside important and challenging questions
of language semantics, distributed execution strategies, and correct-
ness under network dynamics, all of which are essential for the prac-
tical realization of declarative networks.

In this paper, we explore several of these research issues from the
database perspective. We implemented our ideas in the P2 system,
and present evaluations of many of our optimizations in realistic
large-scale distributed experiments. Specifically, the main contri-
butions of this paper are as follows:
• We motivate and formally define the NDlog language for declar-

ative network specification. NDlog is a subset of Datalog that
makes explicit the link graph of the network and the partition-
ing of data across nodes. As part of NDlog, we introduce the
concept of link-restricted rules, which guarantees that all rules
can be rewritten to be executed locally at individual nodes,
and all communication for each rewritten rule only involves
sending messages along links (Section 2).

• We introduce and prove correct relaxed versions of the semi-
naı̈ve execution strategy called buffered semi-naı̈ve and pipe-
lined semi-naı̈ve evaluation. These techniques overcome fun-
damental problems of semi-naı̈ve evaluation in an asynchro-
nous distributed setting, and should be of independent inter-
est outside the context of declarative networking: they sig-
nificantly increase the flexibility of semi-naı̈ve evaluation to
order the derivation of facts (Section 3).

• In the declarative network setting, transactional isolation of
updates from concurrent queries is not useful; network proto-
cols must incorporate concurrent updates about the state of the
network while they run. We address this by formalizing the
typical distributed systems notion of “eventual consistency”
in our context of derived data. Using techniques from mate-
rialized recursive view maintenance, we incorporate updates
to base facts during query execution, and still ensure well-
defined eventual consistency semantics. This is of indepen-
dent interest beyond the network setting when handling up-
dates and long-running recursive queries (Section 4).

• We present a number of query optimization opportunities that
arise in the declarative networking context, including appli-
cations of traditional techniques (e.g., aggregate selections
and magic-sets rewriting), as well as new optimizations for
work-sharing, caching, and cost-based optimizations based on
graph statistics. Again, many of these ideas can be applied
outside the context of declarative networking or distributed
implementations (Section 5).

• We present evaluation results from a distributed deployment
involving 100 machines connected by the Emulab [10] net-
work testbed, running prototypes of our optimization tech-
niques implemented as modifications to the P2 declarative
overlay system (Section 6).

2. DATA AND QUERY MODEL
We first provide a short review of Datalog, following the conven-

tions in Ramakrishnan and Ullman’s survey [28]. A Datalog pro-
gram consists of a set of declarative rules and a query. A Datalog
rule has the form p :- q1,q2, ...,qn., which can be read informally
as “q1 and q2 and ... and qn implies p”. p is the head of the rule,
and q1,q2, ...,qn is a list of literals that constitutes the body of the
rule. Literals are either predicates applied to fields (variables and
constants), or function symbols applied to fields. The rules can re-
fer to each other in a cyclic fashion to express recursion. The order
in which the rules are presented in a program is semantically im-
material. The commas separating the predicates in a rule are logical

conjuncts (AND); the order in which predicates appear in a rule body
also has no semantic significance (though implementations typically
employ a left-to-right execution strategy). The query specifies the
output of interest.

The predicates in the body and head of Datalog rules are relations,
and we will refer to them interchangeably as predicates, relations,
or tables. Each relation has a primary key, which consists of a set
of fields that uniquely identifies each tuple within the relation. We
allow the primary key to be specified for stored (“extensional”) re-
lations; in the absence of other information, the primary key is the
full set of attributes in the relation.

The names of predicates, function symbols and constants begin
with a lower-case letter, while variable names begin with an upper-
case letter. Most implementations of Datalog enhance it with a lim-
ited set of function calls (which start with “f ” in our syntax), in-
cluding boolean predicates, arithmetic computations and simple list
manipulation (e.g., the f concatPath function in our first example).
Aggregate constructs are represented as functions with field vari-
ables within angle brackets (<>). For most of our discussion, we
will not consider negated predicates; we will return to the topic of
negation as part of our future work (Section 8).

As an example, the following program computes the shortest paths
between all pairs of nodes in a graph. The program has four rules
(which for convenience we label R1-R4), and takes as input a stored
(“extensional”) relation link(src,dst,cost). R1 and R2 are used to
derive “paths” in the graph, represented as tuples in the derived (“in-
tensional”) relation path(src,dst,nextHop, pathVector, . . .). The src
and dst fields represent the endpoints of the path; the pathVector is
a string encoding the full path. We discuss nextHop later. Given the
path relation, Rule R4 computes the shortest paths as the derived
relation shortestPath(src,dst, pathVector,cost). R3 derives the re-
lation spCost(src,dst,mincost) that computes the minimum cost for
each (src,dst) group for all input paths. The rule Query specifies
shortestPath tuples as the result tuples. R2 is a linear rule, since
there is only one recursive literal in the body. Rules with more than
one recursive literal in the body are non-linear.
R1: path(S,D,D,P,C) :- link(S,D,C), P = f concatPath(link(S,D,C), nil).
R2: path(S,D,Z,P,C) :- link(S,Z,C1), path(Z,D,Z2,P2,C2),
. C = C1 + C2, P = f concatPath(link(S,Z,C1),P2).
R3: spCost(S,D,min<C>) :- path(S,D,Z,P,C).
R4: shortestPath(S,D,P,C) :- spCost(S,D,C), path(S,D,Z,P,C).
Query: shortestPath(S,D,P,C).

Rule R1 produces one-hop paths from existing link tuples, and
Rule R2 recursively produces path tuples of increasing cost by match-
ing the destination fields of existing links to the source fields of
previously computed paths. The matching is expressed using the
repeated “Z” variable in link(S,Z,C1) and path(Z,D,Z2,P2,C2) of
rule R2. Intuitively, rule R2 says that if there is a link from node S
to node Z, and there is a path from node Z to node D, then there is
a path from node S to node D via Z. In the presence of path cycles,
the query never terminates, as R1 and R2 will generate paths of ever
increasing lengths. However, this can be fixed with a well-known
query rewrite (Section 5.1.1) when costs are positive.

2.1 Network Datalog
In this section, we introduce the data and query model that we pro-

pose for declarative networking. The language we present is Net-
work Datalog (NDlog), a restricted variant of traditional Datalog
intended to be computed in distributed fashion on physical network
graphs. In describing our model, we use the NDlog query shown in
Figure 1, which performs distributed computation of shortest paths.

One of the novelties of our setting, from a database perspective,
is that data is distributed and relations may be partitioned across
sites. To ease the generation of efficient query plans in such a sys-
tem, NDlog gives the query writer explicit control on data place-
ment and movement. Specifically, NDlog uses a special data type,



SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C),
. P = f concatPath(link(@S,@D,C), nil).
SP2: path(@S,@D,@Z,P,C) :- #link (@S,@Z,C1),
. path(@Z,@D,@Z2,P2,C2), C = C1 + C2,
. P = f concatPath(link(@S,@Z,C1),P2).
SP3: spCost(@S,@D,min<C>) :- path(@S,@D,@Z,P,C).
SP4: shortestPath(@S,@D,P,C) :- spCost(@S,@D,C),
. path(@S,@D,@Z,P,C).
Query: shortestPath(@S,@D,P,C).

Figure 1: Shortest-Path Query in NDlog .

address, to specify a network location. Names of address variables
and constants are prepended with “@”. More formally, we have the
following definition:
Definition 1 A location specifier is an attribute of type address in a
predicate that indicates the network storage location of each tuple.

As a matter of notation, we require the location specifier to be the
first field in all predicates, and we highlight it in bold for clarity. For
example, the location specifier of link(@S,@D,C) is @S.

Another novelty of our setting is that we assume a network graph
that is not fully connected, i.e., a node can communicate directly
with only a subset of nodes in the system. This allows us to model
the physical connectivity of a typical autonomous system in the In-
ternet, where each node is connected to relatively few other nodes.
In contrast, both traditional parallel query processors and more re-
cent distributed query engines, such as PIER [17], assume a fully
connected network graph, where messages can be sent directly from
any node to any other node in the system. Parallel systems achieve
this by engineering (and provisioning) the interconnection network,
while PIER uses overlay routing to connect any two nodes.

To express the constraint that a node can send data only to another
node with which it is physically connected, we introduce the concept
of link relation, which is defined as follows:
Definition 2 A link relation is a stored (“extensional”) relation
link(@src,@dst, ...) representing the connectivity information of
the network being queried.

The first two fields of each link table entry contain the source and
destination addresses of a network link respectively, followed by an
arbitrary number of other fields (typically metrics) describing the
link. In this paper, we constrain all links to be bidirectional, i.e., if
there is a network edge from a node to its neighbor, the reverse must
be true1. In all our example queries, we utilize only one link table.
In practice, there can be multiple such tables used by different rules.

Given that we will be executing queries across network links, it is
useful to identify queries that do not require communication:
Definition 3 Local rules are rules that have the same location spec-
ifier in each predicate, including the head.

Local rules can be executed without any distributed logic. Rules
SP1, SP3 and SP4 are local. SP2 is a non-local rule since the link
and path body predicates are stored at different locations.

In NDlog, the evaluation of a rule must depend only on commu-
nication along the physical links. To this end, we introduce the fol-
lowing:
Definition 4 A link literal is a link relation that appears in the body
of a rule prepended with the “#” symbol.
Given the preceding definitions, we are ready to define a simple

1In practice, some networks may not have symmetric links. Our
framework can be extended to handle this, but generalizing the dis-
cussion in that manner complicates our presentation and is out of the
scope of this paper.

syntactic constraint on the rules to ensure that communication takes
place only along the physical links:
Definition 5 A link-restricted rule is either a local rule, or a rule
with the following properties:

• There is exactly one link literal in the body
• All other literals (including the head predicate) have their lo-
cation specifier set to either the first (source) or second (des-
tination) field of the link literal.

This syntactic constraint precisely captures the requirement that
we be able to operate directly on a network whose link connectivity
is not a full mesh. Further, as we demonstrate in Section 3, link-
restriction also guarantees that all programs with only link-restricted
rules can be rewritten into a canonical form where every rule body
can be evaluated on a single node. In addition, all communication
for each rewritten rule only involves sending messages along links.
The following is an example of a link-restricted rule:
p(@D,...) :- #link (@S,@D,...),p1(@S,...),p2(@S,...), ..., pn(@S,...).

The rule body of this example is executed at @S and the resulting
p tuples are sent to @D, preserving the communication constraints
along links. Note that this example’s body predicates all have the
same location specifier: @S, the source of the link. In contrast,
rule SP2 of Figure 1 is link-restricted but has some relations whose
location specifier is the source, and others whose location specifier is
the destination; this needs to be rewritten as described in Section 3.

Given these preliminaries, we are now ready to present our lan-
guage NDlog:
Definition 6 A Network Datalog (NDlog) program is a Datalog pro-
gram that satisfies the following syntactic constraints:

1. Location specificity: Each predicate has a location speci-
fier as its first attribute

2. Address type safety: A variable that appears once in a rule
as an address type must not appear elsewhere in the rule as a
non-address type.

3. Stored link relations: Link relations never appear in the
head of a rule with a non-empty body (i.e., they are stored,
not derived).

4. Link-restriction: Any non-local rules in the program are
link-restricted by some link relation.

Since NDlog is a subset of Datalog, the semantics of a valid NDlog
program are exactly those of Datalog.

2.2 Shortest Path Example
To illustrate NDlog, we step through an execution of the shortest-

path query above to illustrate derivation and communication of tu-
ples as the query is computed. We make use of the example network
in Figure 2. Our discussion is necessarily informal since we have
not yet presented our distributed implementation strategies; in the
next section, we show in greater detail the steps required to generate
the execution plan. Here, we focus on a high-level understanding of
the data movement in the network during query processing.

We will describe communication in iterations, where at each iter-
ation, each network node generates paths of increasing hop count,
and then propagates these paths to neighbor nodes along links. In
the 1st iteration, all nodes initialize their local path tables to 1-hop
paths using SP1. In the 2nd iteration, using SP2, each node takes
the input paths generated in the previous iteration, and computes
2-hop paths, which are then propagated to its neighbors. For exam-
ple, path(a,d,b, [a,b,d],6) is generated at node b using path(b,d,d,
[b,d],1) from the 1st iteration, and propagated to node a. In addi-
tion to storing the entire path vector, each path tuple also contains
the nextHop attribute, which indicates for each path the next hop to
route the message in the network. In fact, many network protocols
propagate only the nextHop and avoid sending the entire path vector.
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Figure 2: Nodes in the network are running the shortest-path query. We
only show newly derived tuples at each iteration. For simplicity, we show
only the derived paths along the solid lines even though the network con-
nectivity is bidirectional (dashed lines).

As paths are being computed, the shortest paths are also incremen-
tally computed. For example, node a computes path(a,b,b, [a,b],5)
using rule SP1, and then sets its shortest path to shortestPath(a,b,
[a,b],5) using rule SP4. In the next iteration, node a receives path(a,b,c,
[a,c,b],2) from node c which has lower cost compared to the pre-
vious shortest cost of 5, and hence a new shortestPath(a,b, [a,b],2)
replaces the previous value.

2.3 Expressiveness
In previous work [24] we argued that executing a shortest path

distributed Datalog query closely resembles the distributed compu-
tation of the well-known path vector [25] protocol. In proposals for
declarative networks [23, 24], Datalog-like programs were used for
a variety of networking tasks, including standard routing protocols
such as distance vector [25] and dynamic source routing [20], and
more complex networks such as multicast trees and the Chord net-
work [34]. We note that NDlog is flexible enough for expressing
most of these programs efficiently, and provides the advantages of
having clear semantics as described above (something that is not
available in the original language for P2 described in [23]) and a
clearly defined link-restricted implementation as described below.

3. EXECUTION PLAN GENERATION
Having illustrated the intended execution of an example program,

we now describe the steps required to automatically generate an ex-
ecution plan from a NDlog program. We first focus on generating
an execution plan in a centralized implementation, before extending
the techniques to the network scenario.

3.1 Centralized Plan Generation
In generating the centralized plan, we utilize the well-known semi-

naı̈ve fixpoint [3,4] evaluation mechanism that ensures no redundant
evaluations. As a quick review, in semi-naı̈ve (SN) evaluation, input
tuples computed in the previous iteration of a recursive rule execu-
tion are used as input in the current iteration to compute new tuples.
Any new tuples that are generated for the first time in the current
iteration are then used as input to the next iteration. This is repeated
until a fixpoint is achieved (i.e., no new tuples are produced).

The semi-naı̈ve rewritten rule for rule SP2 is shown below:
SP2-1: 4pathnew(@S,@D,@Z,P,C) :- #link (@S,@Z,C1),
. 4pathold (@Z,@D,@Z2,P2,C2), C = C1 + C2,
. P = f concatPath(link(@S,@Z,C1),P2).

Figure 3 shows the dataflow realization for rule SP2-1 using the
conventions of P2. We will briefly explain how the semi-naı̈ve eval-
uation is achieved here. Each semi-naı̈ve rule is implemented as a

rule strand. Each strand consists of a number of relational operators.
The example strand receives new 4pathold tuples generated in the
previous iteration to generate new paths (4pathnew) which are then
inserted into the path table (with duplicate elimination) for further
processing in the next iteration.

In Algorithm 1, we show the pseudocode for a centralized P2 im-
plementation of multiple semi-naı̈ve rule strands where each rule has
the form4pnew

j :- pold
1 ,..., pold

k−1,4pold
k ,pk+1,...,pn,b1,b2, ...,bm;2

p1, ..., pn are recursive predicates and b1, ...bm are base predicates.
4pold

k refers to pk tuples generated for the first time in the previous
iteration. pold

k refers to all pk tuples generated before the previous
iteration.

Algorithm 1 Semi-naı̈ve (SN) Evaluation in P2
while ∃Bk.size > 0

∀Bk where Bk.size > 0,4pold
k ← Bk. f lush()

execute all rule strands
foreach recursive predicate p j

pold
j ← pold

j ∪4pold
j

B j←4pnew
j − pold

j
p j← pold

j ∪B j
4pnew

j ← /0

In the algorithm, Bk denotes the buffer for pk tuples generated
in the previous iteration (4pold

k ). Initially, pk, pold
k , 4pold

k and
4pnew

k are empty. As a base case, we execute all the rules to gen-
erate the initial pk tuples, which are inserted into the corresponding
Bk buffers. Each subsequent iteration of the while loop consists of
flushing all existing 4pold

k tuples from Bk and executing all rule
strands to generate 4pnew

j tuples, which are used to update pold
j ,

B j and p j accordingly. Note that only new p j tuples generated in
the current iteration are inserted into B j for use in the next iteration.
Fixpoint is reached when all buffers are empty.

3.2 Distributed Plan Generation
In the distributed implementation of the shortest-path query, non-

local rules whose body predicates have different location specifiers
cannot be executed at a single node, since the tuples that must be
joined are situated at different nodes in the network. A rule local-
ization rewrite step ensures that all tuples to be joined are at the same
node. This allows a rule body to be locally computable.

(#link.@S,path.@Z,path.@D,f_concatPath
(#link(@S,@Z,C), path.P), #link.C+path.C)

as path(@S,@D,@Z,P,C)

path(@Z,@D,@Z2,P,C)

#Link.Z=path.Z
path.@S

#link(@S,@Z,C)

#link.@Z

project

Figure 4: Logical Query Plan for rule SP2 from Section 2.

Consider rule SP2 from Section 2 where the link and path pred-
icates have different location specifiers. These two predicates are
2These rules are logically equivalent to rules of the form 4pnew

j :-
p1, p2,...,pk−1,4pold

k ,pk+1,...,pn,b1,b2, ...,bm, and have the advan-
tage of avoiding redundant inferences within each iteration.
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   pathold.Z=link.Z

Project
  pathnewBuffer

Output
paths

Input
paths path

  pathold   pathold

link

Figure 3: Rule strand for rule SP2-1 in P2. Output paths that are generated from the strand are “wrapped back” as input into the same strand.

joined by a common “@Z” address field. Figure 4 shows the cor-
responding logical query plan depicting the distributed join. The
clouds represent an “exchange”-like operator [14] that forwards tu-
ples from one network node to another; clouds are labeled with the
link attribute that determines the tuple’s recipient. The first cloud
(#link.@Z) sends link tuples to the neighbor nodes indicated by
their destination address fields, to join with matching path tuples
stored by their source address fields. The second cloud (path.@S)
transmits for further processing new path tuples computed from the
join, setting the recipient according to the source address field.

Based on the above distributed join, rule SP2 can be rewritten into
the following two rules. Note that all predicates in the body of SP2a
have the same location specifiers; the same is true of SP2b.
SP2a: linkD(@Z,@S,C) :- #link (@S,@Z,C).
SP2b: path(@S,@D,@Z,P,C) :- #link (@Z,@S,C3),linkD(@Z,@S,C1),
. path(@Z,@D,@Z2,P2,C2),
. C = C1 + C2,
. P = f concatPath(linkD(@Z,@S,C1),P2).

The rewrite is achievable because the link and path predicates,
although at different locations, share a common join address field.
In Algorithm 2, we summarize the general rewrite technique for an
input set of link-restricted rules R. In the pseudocode, for simplicity,
we assume that the location specifiers of all the body predicates are
sorted (@S followed by @D); this can be done as a preprocessing
step. The algorithm as presented here assumes that all links are
bidirectional, and may add a #link (@D,@S) to a rewritten rule to
allow for backward propagation of messages.

Algorithm 2 Rule Localization Rewrite
proc RuleLocalization(R)

while ∃ rule r ∈ R: h(@L, ...) :−#link (@S,@D,...),
p1(@S,..),..,p i(@S,...),
p i+1(@D,...),..,pn(@D,..)

R.remove(r)
R.add(hS(@S,@D, ..) :−#link (@S,@D,..),..,p i(@S,..).)
R.add(hD(@D,@S, ..) :−hS(@S,@D, ..).)
if @L = @D

then R.add(h(@D,..) :- hD(@D,@S,..),
p i+1(@D,..),..,pn(@D,..).)

else R.add(h(@S,..) :- #link (@D,@S),hD(@D,@S..),
p i+1(@D,..),..,pn(@D,..).)

Claim 1 Every link-restricted NDlog program, when rewritten us-
ing Algorithm 2, produces an equivalent program where the follow-
ing holds:

1. The body of each rule can be evaluated at a single node.
2. The communication required to evaluate a rule is limited to

sending derived tuples over links from a link relation.
The equivalence statement in the above claim can be easily shown,

by examining the simple factoring of each removed rule into two
parts. The remainder of the claim can be verified syntactically in the
added rules.

Returning to our example, after rule localization we perform the
semi-naı̈ve rewrite, and then generate the rule strands shown in Fig-
ure 5. Unlike the centralized strand in Figure 3, there are now three

rule strands. The extra two strands (SP2a@S and SP2b-2@Z) are
used as follows. Rule strand SP2a@S sends all existing links to the
destination address field as linkD tuples. Rule strand SP2b-2@Z
takes the new linkD tuples it received via the network and performs
a join operation with the local path table to generate new paths.

3.3 Relaxing Semi-naı̈ve Evaluation
In our distributed implementation, the execution of rule strands

can depend on tuples arriving via the network, and can also result
in new tuples being sent over the network. Traditional semi-naı̈ve
evaluation completely evaluates all rules on a given set of facts,
i.e., completes the iteration, before considering any new facts. In
a distributed execution environment where messages can be delayed
or lost, the completion of an iteration in the traditional sense can
only be detected by a consensus computation across multiple nodes,
which is expensive; further, the requirement that many nodes com-
plete the iteration together (a “barrier synchronization” in parallel
computing terminology) limits parallelism significantly by restrict-
ing the rate of progress to that of the slowest node.

We address this by making the notion of iteration local to a node.
New facts might be generated through local rule execution, or might
be received from another node while a local iteration is in progress.
We propose and prove correct two variations of semi-naı̈ve iteration
to handle this situation: buffered semi-naı̈ve (BSN) and pipelined
semi-naive (PSN). Both approaches extend SN to work in an asyn-
chronous distributed setting, while generating the same results as SN
evaluation. We further prove that these techniques avoid duplicate
inferences, which may result in generating network messages.

3.3.1 Buffered Semi-naı̈ve
Buffered semi-naı̈ve (BSN) is the standard SN algorithm described

in Figure 1 with the following modifications: A node can start a
local SN iteration at any time its local Bk buffers are non-empty.
Tuples arriving over the network while an iteration is in progress are
buffered for processing in the next iteration.

By relaxing the need to run an iteration to global completion, BSN
relaxes SN substantially, by allowing a tuple from a traditional SN
iteration to be buffered arbitrarily, and handled in some future iter-
ation of our choice. Consequently, BSN may generate fewer tuples
per iteration, but all results will eventually be generated. Since BSN
uses the basic SN algorithm, the proof of correctness is straightfor-
ward and we omit it for brevity.

The flexibility offered by BSN on when to process a tuple could
also be valuable outside the network setting, e.g., a disk-based hash
join could accumulate certain tuples across iterations, spill them to
disk in value-based partitions, and process them in value batches,
rather than in order of iteration number. Similar arguments for buffer-
ing apply to other query processing tricks: achieving locality in B-
tree lookups, improving run-lengths in tournament sorts, etc.

3.3.2 Pipelined Semi-naı̈ve
As an alternative to BSN, pipelined semi-naı̈ve (PSN) relaxes

semi-naı̈ve evaluation to the extreme of processing each tuple as it
is received. This provides opportunities for additional optimizations
on a per-tuple basis, at the potential cost of set-oriented local pro-
cessing. New tuples that are generated from the semi-naı̈ve rules, as
well as tuples received from other nodes, are used immediately to
compute new tuples without waiting for the current (local) iteration
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Figure 5: Rule strands for the distributed version of SP2 after localization in P2.

to complete.

Algorithm 3 Pipelined Semi-naı̈ve (PSN) Evaluation
while ∃Qk.size > 0

told,i
k ← Qk.dequeueTuple()

foreach rule strand execution
4pnew,i+1

j :−p1, .., pk−1, told,i
k , pk+1, .., pn,b1,b2, ...,bm

foreach tnew,i+1
j ∈4pnew,i+1

j
if tnew,i+1

j /∈ p j
then p j← p j ∪ tnew,i+1

j
Q j.enqueueTuple(tnew,i+1

j )

Algorithm 3 shows the pseudocode for PSN. Each tuple, denoted
t, has a superscript (old/new, i) where i is its corresponding itera-
tion number in SN evaluation. Each processing step in PSN con-
sists of dequeuing a tuple told,i

k from Qk and then using it as input
into all corresponding rule strands. Each resulting tnew,i+1

j tuple is
pipelined, stored in its respective p j table (if a copy is not already
there), and enqueued into Q j for further processing. Note that in a
distributed implementation, Q j can be a queue on another node, and
the node that receives the new tuple can immediately process the tu-
ple after the enqueue into Q j . For example, the dataflow in Figure 5
is based on a distributed implementation of PSN, where incoming
path and linkD tuples received via the network are stored locally,
and enqueued for processing in the corresponding rule strands.

To fully pipeline evaluation, we have also removed the distinc-
tions between pold

j and p j in the rules. Instead, a timestamp (or
monotonically increasing sequence number) is added to each tuple
at arrival, and the join operator matches each tuple only with tuples
that have the same or older timestamp. This allows processing of
tuples immediately upon arrival, and is natural for network message
handling. This represents an alternative “book-keeping” strategy to
the rewriting used in SN to ensure no repeated inferences. Note that
the timestamp only needs to be assigned locally, since all the rules
are localized.

While PSN enables fully pipeline evaluation, it is worth noting that
PSN can allow just as much buffering as BSN with the additional
flexibility of full pipelining.

In Appendix A, we prove that PSN generates the same results as
SN, and does not repeat any inferences. Let FPS(p) and FPP(p)
denote the result set for p for using SN and PSN respectively. We
show that:
Theorem 1: FPS(p) = FPP(p)
Theorem 2: There are no repeated inferences in computing FPP(p).

In order to compute rules with aggregation (such as SP3), we uti-
lize incremental fixpoint evaluation techniques [27] that are amenable
to pipelined query processing. These techniques can compute mono-
tonic aggregates such as min, max and count incrementally based on

the current aggregate and each new input tuple. We omit the details
for lack of space.

4. SEMANTICS IN A DYNAMIC NETWORK
In practice, the state of the network is constantly changing during

query execution. In contrast to transactional databases, changes to
network state are not isolated from queries while they are running.
Instead, as in network protocols, queries are expected to perform
dynamic recomputations to reflect the most current state of the net-
work. To better understand the semantics in a dynamic network, we
consider the following two degrees of dynamism:
Continuous Update Model: In this model, we assume that updates
occur very frequently – at a period that is shorter than the expected
time for a typical query to reach a fixpoint. Hence, the query results
never fully reflect the state of the network.
Bursty Update Model: In this idealized (but still fairly realistic
model), updates are allowed to happen during query processing.
However, we make the assumption that after a burst of updates,
the network eventually quiesces (does not change) for a time long
enough to allow all the queries in the system to reach a fixpoint.

In our analysis, we focus on the bursty model, since it is amenable
to analysis; our results on that model provide some intuition as to
the behavior in the continuous update model. Our goal in the bursty
model is to achieve a variant of the typical distributed systems no-
tion of eventual consistency, customized to the particulars of NDlog:
we wish to ensure that the eventual state of the quiescent system cor-
responds to what would be achieved by rerunning the queries from
scratch in that state. We briefly sketch the ideas here, and follow up
with details in the remainder of the section.

To ensure well-defined semantics, we use techniques from materi-
alized view maintenance [15], and consider three types of changes:
Insertion: The insertion of a new tuple at any stage of processing
can be naturally handled by (pipelined) semi-naı̈ve evaluation.
Deletion: The deletion of a base tuple leads to the deletion of any
tuples that were derived from that base tuple. Deletions are car-
ried out incrementally via (pipelined) semi-naı̈ve evaluation by in-
crementally deriving all tuples that are to be deleted.
Update: An update is treated as a deletion followed by an insertion.
An update to a base tuple may itself result in derivation of more
updates that are propagated via (pipelined) semi-naı̈ve evaluation.

The use of pipelined semi-naı̈ve evaluation in the discussion can
be replaced with buffered semi-naı̈ve without changing our analysis.
Since some tuples may have multiple derivations, we use the count
algorithm [15] for keeping track of the number of derivations for
each tuple, and only delete a tuple when the count is 0.

In dealing with queries with aggregates, we apply techniques for
incremental computation of aggregates [27] in the presence of up-
dates. The arrival of new tuples may invalidate existing aggregates,
and incremental recomputations are cheaper than computing the en-
tire aggregate from scratch. For example, the re-evaluation cost for
min and max aggregates are shown to be O(log n) time and O(n)
space for the min and max aggregates [27].



4.1 Centralized Semantics
We first provide an intuitive example for the centralized case. Fig-

ure 6 shows a derivation tree for path(e,e,a, [e,a,b,e],7) based on
the shortest-path query. The leaves in the tree are the link base tu-
ples. The root and the intermediate nodes are tuples recursively de-
rived from the children inputs by applying either rules SP1 and SP2.
When updates occur to the base tuples, changes are propagated up
the tree to the root. For example, when the cost of #link(a,b,5) is
updated from 5 to 1, path(a,b,e, [a,b,e],2) and path(e,a, [e,a,b,e],3)
are re-derived and replace the previous tuples. Similarly, the dele-
tion of link(b,e,1) leads to the deletion of path(b,e,e, [b,e],1),
path(a,b,e, [a,b,e],2), and then path(e,a,e, [e,a,b,e],3).

Let FPp be the set of tuples derived using PSN under the bursty
model, and FFPp be the set of tuples that would be computed by
PSN if starting from the quiesced state. In Appendix B, we prove
the following theorem:
Theorem 3: FPp = FFPp in a centralized setting.

The proof requires that all changes (inserts, deletes, updates) are
applied in the same order in which they arrive. This is guaranteed
by the FIFO queue of PSN and the use of timestamps.

p(e,e,a,[e,a,b,e],7)

p(a,e,b,[a,b,e],6)

p(b,e,e,[b,e],1)

#link(b,d,1)

#link(a,b,5)

#link(e,a,1)

1

2

3
p(e,e,a,[e,a,b,e],3)

p(a,e,b,[a,b,e],2)

p(b,e,e,[b,e],1)

#link(b,e,1)

#link(a,b,5)

#link(e,a,1)

Figure 6: Derivation tree for derived path tuple from a to e. The left dia-
gram shows updating the tree due to a change in base tuple #link(a,b,5),
and the right diagram shows the deletion of #link(b,e,1).

4.2 Distributed Semantics
In order for incremental evaluation to work in a distributed envi-

ronment, it is essential that along any link in the network, there is
a FIFO ordering of messages. That is, along any link literal #link
(s,d), facts derived at node s should arrive at node d in the same order
in which they are derived (and vice versa). This guarantees that up-
dates can be applied in order. Using the same definition of FPp and
FFPp as before, assuming the link FIFO ordering, in Appendix B,
we prove the following theorem:
Theorem 4: FPp = FFPp in a distributed setting with FIFO links.

The drawback of enforcing network link FIFO is that it increases
the complexity and lowers the performance of the underlying net-
work. The alternative adopted by network protocols is to maintain
all tuples as soft state. In the soft state storage model, all data (base
and derived tuples) has an explicit “time to live” (TTL), and facts
(in our case base tuples) must be explicitly reinserted with their lat-
est values and a new TTL or they are deleted. Reinsertion of base
tuples leads to recomputation of query results, which in a quies-
cent network, leads to eventual consistency through the reinsertion
of the facts from the quiescent state. The drawbacks of soft state
are well known: recomputation can be expensive, and if done only
periodically, the time to react to failures is a half-period on average.
However, soft state is often favored in networking implementations
because in a very simple manner it provides eventually correct se-
mantics in the face of reordered messages, node disconnection, and
other unpredictable occurrences.

5. QUERY OPTIMIZATIONS
We proceed to discuss a set of query optimization opportunities

that arise in the declarative networking context. These include ap-
plications of traditional Datalog optimizations, as well as new tech-
niques for multi-query optimization, result caching, and cost-based
optimizations based on graph statistics. Some of these techniques—
in particular the use of traditional Datalog optimizations and caching—
were proposed in our previous work [24]. We present extensions to
our basic techniques, as well as new avenues for optimization.

Compared to the relatively solid foundation of the previous discus-
sion, our approach here is more speculative: we open up a number
of broad issues, and in Section 6 we provide a taste of the potential
benefits of most of them via a full-fledged implementation running
on a sizable network testbed. However our intention here is not
to “close the book” on any of these issues; much as in traditional
database query optimization and execution, we expect that our tech-
niques here for declarative networking will lead to significant work
in a series of more focused investigations.

5.1 Traditional Datalog Optimizations
We first explore the applicability of three traditional Datalog opti-

mization techniques: aggregate selections, magic sets and predicate
reordering.

5.1.1 Aggregate Selections
A naı̈ve execution of the shortest-path query computes all possible

paths, even those paths that do not contribute to the eventual shortest
paths. This inefficiency can be avoided with a query optimization
technique known as aggregate selections [12, 36].

Aggregate selections are useful when the running state of a mono-
tonic AGG function can be used to prune query evaluation. For ex-
ample, by applying aggregate selections to the shortest-path query,
each node only needs to propagate the most current shortest paths
for each destination to neighbors. This propagation can be done
whenever a shorter path is derived.

A potential problem with this approach is that the propagation of
new shortest paths may be unnecessarily aggressive, resulting in
wasted communication. As an enhancement, in the periodic ag-
gregate selections scheme, a node buffers up new paths received
from neighbors, recomputes any new shortest paths incrementally,
and then propagates the new shortest paths periodically. The pe-
riodic technique has the potential for reducing network bandwidth
consumption, at the expense of increasing convergence time. It is
useful for queries whose input tuples tend to arrive over the network
out of order in terms of the monotonic aggregate – e.g., computing
“shortest” paths for metrics that are not correlated with the network
delays that dictate the arrival of the tuples during execution.

In addition, aggregate selections are necessary for the termination
of some queries, as alluded to previously in Section 2. For example,
with aggregate selections, even if paths with cycles are permitted,
the shortest-path query will terminate, avoiding cyclic paths of in-
creasing lengths.

5.1.2 Magic Sets and Predicate Reordering
The shortest-path query in our example computes all-pairs short-

est paths. This leads to unnecessary overhead when only a sub-
set of paths limited by sources and/or destinations is queried. This
problem can be alleviated by applying two optimization techniques:
magic-sets rewriting and predicate reordering.
Magic-Sets Rewriting: To limit query computation to the relevant
portion of the network, we use a query rewrite technique, called
magic sets rewriting [5]. The Magic Sets method is closely related to
methods such as Alexander [30] and QSQ [22]. Rather than review
Magic Sets here, we illustrate its use in an example: by modifying
SP1 from the shortest-path query, the following computes only paths
limited to destinations in the magicDst table.
#include(SP2,SP3,SP4)



SP1-D: path(@S,@D,@D,P,C) :- magicDst(@D),#link(@S,@D,C),
. P = f concatPath(link(@S,@D,C), nil).
Query: shortestPath(@S,@D,P,C).

Rule SP1-D initializes 1-hop paths for destinations whose
magicDst(@D) is present in the magicDst table. This ensures that
rule SP2 only propagates paths to selected destinations based on the
magicDst table. The shortest paths are then computed as before
using rules SP3 and SP4.
Predicate Reordering: The use of magic sets in the previous query
is not useful for pruning paths from sources. This is because paths
are derived in a “Bottom-Up” (BU) fashion starting from destina-
tion nodes, where the derived paths are shipped “backwards” along
neighbor links from destinations to sources. Interestingly, switch-
ing the search strategy can be done simply by reordering the path
and #link predicates. This has the effect of turning SP2 from a
right-recursive to a left-recursive rule. Together with the use of
magic sets, the following magic-shortest-path query allows filtering
on both sources and destinations:
SP1-SD: pathDst(@D,@S,@D,P,C) :- magicSrc(@S), #link (@S,@D,C),
. P = f concatPath(link(@S,@D,C), nil).
SP2-SD: pathDst(@D,@S,@Z,P,C) :- pathDst(@Z,@S,@Z1,P1,C1),
. #link (@Z,@D,C2), C := C1 + C2,
. P = f concatPath(P1,link(@Z,@D,C2)).
SP3-SD: spCost(@D,@S,min<C>) :- magicDst(@D),
. pathDst(@D,@S,@Z,P,C).
SP4-SD: shortestPath(@D,@S,P,C) :- spCost(@D,@S,C),
. pathDst(@D,@S,@Z,P,C).

The query computes 1-hop paths starting from each magicSrc us-
ing rule SP1-SD. Rule SP2-SD then recursively computes new paths
by following all reachable links, and stores these paths as pathDst(
dst, src, prevHop, pathVector, cost) tuples at each desti-
nation. Rules SP3-SD and SP4-SD then filter relevant paths based
on magicDst, and compute the shortest paths, which can then be
propagated along the shortest paths back to the source node. In
fact, executing the query in this “Top-Down” (TD) fashion resem-
bles a network protocol called dynamic source routing [20] which
is proposed for ad-hoc wireless environments, where the high rate
of change in the network makes such targeted path discovery more
efficient compared to computing all-pairs shortest paths.

5.2 Multi-Query Optimizations
In a distributed setting, it is likely that many related queries will be

concurrently executed independently by different nodes. A key re-
quirement for scalability is the ability to share common query com-
putations (e.g., pairwise shortest paths) among a potentially large
number of queries. We outline two basic strategies for multi-query
sharing in this environment: query-result caching and opportunistic
message sharing.
Query-Result Caching. Consider the magic-shortest-path query
where node a computes shortestPath(a,d, [a,b,d],6) to node d. This
cached value can be reused by all queries for destination d that pass
through a, e.g., the path from e to d. Currently, our implementation
generates the cache internally, building a cache of all the query re-
sults (in this case shortestPath tuples) as they are sent back on the
reverse path to the source node. Since the subpaths of shortest paths
are optimal, these can also be cached as an enhancement. As ongo-
ing work, we are exploring techniques for declaratively specifying
the cache, and evaluating caching policies.
Opportunistic Message Sharing. In the previous example, we con-
sider how different nodes (src/dst) can share their work in running
the same query logic with different constants. Sharing across dif-
ferent queries is a more difficult problem, since it is non-trivial to
detect query containment in general [9]. However, we observe that
in many cases, there can be correlation in the message patterns even
for different queries. One example arises when different queries re-
quest “shortest” paths based on different metrics, such as latency,

reliability and bandwidth; path tuples being propagated for these
separate queries may be identical modulo the metric attribute being
optimized.

A strategy that we have implemented is opportunistic message
sharing, where multiple outgoing tuples that share common attribute
values are essentially joined into one tuple if they are outbound to
the same destination and share several common attributes; they can
be re-partitioned at the receiving end. This achieves the effects of
jointly rewriting the queries in a fashion, but on an opportunistic
basis: derivations are done in this combined fashion only in cases
that are spatiotemporally convenient during processing. In order to
improve the odds of achieving this sharing, outbound tuples may be
buffered for a time and combined in batch before being sent.

As an alternative to this opportunistic sharing at the network level,
one can achieve explicit sharing at a logical level, e.g., using cor-
related aggregate selections for pruning different paths based on a
combination of metrics. For example, consider running two queries:
one that computes shortest latency paths, and another that computes
max-bandwidth paths. We can rewrite these as a single query by
checking two aggregate selections, i.e., only prune paths that sat-
isfy both aggregate selections.

5.3 Cost-Based Rewrites
Currently, queries are executed using a left- (BU) or right-recursive

(TD) query expression (Section 5.1.2). Our main goal during query
execution is network efficiency (i.e., reducing the burden on the un-
derlying network), which, typically, also implies faster query con-
vergence. It is not difficult to see that neither BU nor TD execution is
universally superior under different network/query settings. Even in
the simple case of a shortest-path discovery query shortestPath(@S,
@D,P,C) between two given nodes (@S,@D), minimizing mes-
sage overhead implies that our query processor should prefer a strat-
egy that restricts execution to “sparser” regions of the network (e.g.,
doing a TD exploration from a sparsely-connected source @S).

We argue that cost-based query optimization techniques are needed
to guarantee effective query execution plans. While such techniques
have long been studied in the context of relational database sys-
tems, optimizing distributed recursive queries for network efficiency
raises several novel challenges that we are exploring in our ongoing
work. In the remainder of this section, we briefly discuss some of
our preliminary ideas in this area and their ties with work in network
protocols.
The Neighborhood Function Statistic. As with traditional query
optimization, cost-based techniques must rely on appropriate statis-
tics for the underlying execution environment that can drive the
optimizer’s choices. One such key statistic for network efficiency
is the local neighborhood function N(). Formally, N(X ,r) is the
number of distinct network nodes within r hops of node X . The
neighborhood function is a natural generalization of the size of the
transitive closure (i.e., reachability set) of a node, that can be esti-
mated locally (e.g., through other recursive queries running in the
background/periodically). N(X ,r) can also be efficiently approxi-
mated through approximate-counting techniques using small (log-
size) messages [31]. To see the relevance of N() for our query-
optimization problem, consider our example shortestPath(@s,@d,P,
C) query, and let dist(s,d) denote the distance of s, d in the net-
work. A TD search would explore the network starting from node s,
and (modulo network batching) result in a total of N(s,dist(s,d))
messages (since it reaches all nodes within a radius of dist(s,d)
from s). Note that each node only forwards the query message once,
even though it may receive it along multiple paths. Similarly, the
cost for a BU query execution is N(d,dist(s,d)). However, nei-
ther of these strategies is necessarily optimal in terms of message
cost. The optimal strategy is actually a hybrid scheme that “splits”
the search radius dist(s,d) between s and d to minimize the overall



messages; that is, it first finds rs and rd such that:
(rs,rd) = arg min

rs+rd=dist(s,d)
{ N(s,rs)+N(d,rd) },

and then runs concurrent TD and BU searches from nodes s and d
(with radii rs and rd , respectively). At the end of this process, both
the TD and the BU search have intersected in at least one network
node, which can easily assemble the shortest (s,d) path. The above
search strategy can be easily implemented as a rewrite using simple
NDlog rules. While the above optimization problem is trivially solv-
able in O(dist(s,d)) time, generalizing this hybrid-rewrite scheme
to the case of multiple sources and destinations raises difficult algo-
rithmic challenges. And, of course, adapting such cost-based op-
timization algorithms to work in the distributed, dynamic setting
poses systems challenges. Finally, note that neighborhood-function
information can also provide a valuable indicator for the utility of a
node as a result cache (Section 5.2) during query processing.
Adaptive Network Routing Protocols. While we do not evalu-
ate the above concepts in our experiments below, we note that the
networking literature has considered adaptive routing protocols that
strongly resemble our use of hybrid rewrites; hence, we believe
this is an important area for future investigation and generaliza-
tion. One interesting example is the class of Zone-Routing Proto-
cols (ZRP) [16]. A ZRP algorithm works by each node precomput-
ing k-hop-radius shortest paths to neighboring nodes (in its “zone”)
using a BU strategy. Then, a shortest-path route from a source
to destination is computed in a TD fashion, using essentially the
magic-shortest-path query described above, utilizing any precom-
puted shortest paths along the way. Each node sets its zone radius
k adaptively based on the density and rate of change of links in its
neighborhood; in fact, recent work [29] on adjusting the zone radius
for ZRP-like routing uses exactly the neighborhood-function statis-
tic.

6. EXPERIMENTS
We have prototyped our language, execution model, and some of

our optimizations as modifications to the P2 system. Our prototype
takes as input NDlog programs, performs rule localization, and gen-
erates a dataflow graph consisting of P2 elements. Each element is
a node in the dataflow graph, and performs tasks such as queuing,
network processing and traditional relational operations like joins
and aggregations.

The generated execution plan is structurally similar to Figure 5,
where there are rule strands comprising chains of elements. Each
rule strand takes as input a queue, corresponding to new tuples for
each strand. Our current implementation uses the PSN algorithm at
the tuple granularity. A new tuple is dequeued and processed by the
rule strand to generate new tuples which are then enqueued at the
same node or sent as a network message for further processing at
another node.

Beyond validating our language and implementation, the main goal
of our evaluation is to verify the effectiveness of several of the pro-
posed optimizations. In evaluating our system, the main metrics that
we use are:
Convergence time: The time taken for the query execution to gen-
erate all the query results.
Communication overhead: The number of bytes transferred for
each query. We consider both aggregate communication overhead
(MB), as well as per-node bandwidth (kBps).

In summary, we find:
1. The aggregate selections optimization reduces communica-

tion overhead. Using periodic aggregate selections reduces
this overhead further.

2. The use of magic sets and predicate reordering reduces com-
munication overhead when only a limited number of paths are
queried.

3. Multi-query sharing techniques such as query result caching

and opportunistic result caching demonstrate the potential to
reduce communication overhead when there are several con-
current queries.

4. On a network with bursty updates, incremental query evalua-
tion techniques can recompute paths at a fraction of the cost
of recomputing the queries from scratch.

6.1 Setup
Our experiments are conducted by running our modified P2 on 100

nodes on the Emulab [10] testbed. This testbed emulates realistic la-
tency and bandwidth constraints seen on the Internet, yet provides
repeatable experiments under a controlled environment. As input to
the Emulab testbed, we use transit-stub topologies generated using
GT-ITM [1], a package that is widely used to model Internet topolo-
gies. Our topology has four transit nodes, eight nodes per stub and
three stubs per transit node. Latency between transit nodes is 50
ms, latency between transit nodes and their stub nodes is 10 ms, and
latency between any two nodes in the same stub is 2 ms. The link
capacity is set to 10 Mbps.

We construct an overlay network over the base GT-ITM topology
where each node is assigned to one of the stub nodes. Each over-
lay node runs P2 on one Emulab machine, and picks four randomly
selected neighbors. Each node has four link tuples, one for each
neighbor. Each link tuple has metrics that include latency (based on
the underlying GT-ITM topology), reliability (link loss correlated
with latency), and a randomly generated value.

We base our workload primarily on routing protocols [24], and
benchmark four variants of the same shortest-path query, differing
in the link metric each seeks to minimize. On all our graphs, we
label these queries by their link metric: Hop-Count, Latency, Reli-
ability and Random, respectively. Note that Random serves as our
stress case: we expect it to have the worst performance among all
queries, because aggregate selections are less likely to be effective
when the aggregate metric is uncorrelated with the network latency,
which determines tuple arrival order during query execution.

6.2 Aggregate Selections
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Figure 7: Per-node Bandwidth
(kBps).
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We first investigate the effectiveness of aggregate selections for
different queries. Figure 7 shows the per-node bandwidth usage
against time for the four queries. Figure 8 shows the percentage
of eventual best paths completed against time. Our results show that
Hop-Count converges the most quickly in 4.4 seconds, followed by
Latency and Reliability in 4.9 seconds and 4.8 seconds respectively.
Random has the worst convergence time of 5.8 seconds.

During query execution, the communication overhead incurred by
all four queries shows a similar trend (Figure 7). Initially, the com-
munication overhead increases as more and more paths (of increas-
ing length) are derived. After it peaks at around 19kBps per-node,
the communication overhead decreases, as fewer and fewer optimal
paths are left to be derived. In terms of aggregate communication
overhead, Random incurs the most overhead (4.1 MB), while Hop-
Count, Latency and Reliability use 2.6 MB, 3.1 MB and 3.2 MB,



respectively. The relatively poor performance of Random is due to
the lack of correlation between the metric and network latency, lead-
ing to a greater tendency for out-of-order arrival of path tuples that
results in less effective use of aggregate selections.
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Figure 9: Per-node Bandwidth
(kBps).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6
%

 R
es

ul
ts

Time (s)

Hop-Count
Latency

Reliability
Random

Figure 10: Query results over
Time (seconds).

The results in Figures 9 and 10 illustrate the effectiveness of the
periodic aggregate selections approach, as described in Section 5.1.1.
In particular, this approach reduces the bandwidth usage of Hop-
Count, Latency, Reliability and Random by 17%, 12%, 16% and
29%, respectively. Random not only shows the greatest reduction
in communication overhead, its convergence time also reduces from
5.8 seconds to 5 seconds.

6.3 Magic Sets and Predicate Reordering
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Next, we study the effectiveness of combining the use of magic
sets and predicate reordering for lowering communication overhead
when the queries are constrained by randomly chosen sources and
destinations. Our workload consists of queries that request source-
to-destination paths based on the Hop-Count metric. For each query,
we execute the magic-shortest-path query (Section 5.1.2).

Figure 11 shows the aggregate communication overhead as the
number of queries increases. The No-MS line represents our base-
line, and shows the communication overhead in the absence of rewrites
(this essentially reduces to computing all-pairs least-hop-count). The
MS line shows the communication overhead when running the op-
timized query with no sharing across queries. When there are few
queries, the communication overhead of MS is significantly lower
than that of NO-MS. As the number of queries increases, the com-
munication overhead of MS increases linearly, exceeding No-MS af-
ter 170 queries.

In addition, Figure 11 also illustrates the effectiveness of caching
(Section 5.2). The MSC line shows the aggregate communication
overhead for magic sets with caching. For fewer than 170 queries,
there is some overhead associated with caching. This is due to false
positive cache hits, where a cache result does not contribute to com-
puting shortest paths. However, as the number of queries increases,
the overall cache hit rate improves, resulting in a dramatic reduc-
tion of bandwidth. When limiting the choice of destination nodes to

30% (MSC-30%) and 10% (MSC-10%), the communication over-
head levels of at 1.8 MB, and 1 MB, respectively. The smaller the
set of requested destinations, the higher the cache hit rate, and the
greater the opportunity for sharing across different queries. These
results are consistent with the results obtained by Loo et al. [24] in
a similar experiment, using the PIER [17] simulator.

6.4 Opportunistic Message Sharing
We study the impact of performing opportunistic message sharing

across concurrent queries that have some correlation in the messages
being sent. Figure 12 shows per-node bandwidth usage for running
the queries on different metrics concurrently. To facilitate sharing,
we delay each outbound tuple by 300ms in anticipation of possible
sharing opportunities. The Latency, Reliability and Random lines
show the bandwidth usage of each query individually. The No-Share
line shows the total aggregate bandwidth of these three queries with-
out sharing. The Share line shows the aggregate bandwidth usage
with sharing. Our results clearly demonstrate the potential effec-
tiveness of message sharing, which reduces the peak of the per-node
communication overhead from 27 kBps to 16 kBps, and the total
communication overhead by 34%.

6.5 Incremental Query Evaluation
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In our final experiment, we examine the overhead of incrementally
maintaining query results in a dynamic network. We run the queries
over a period of time, and subject the network to burst updates as de-
scribed in Section 4. Each update burst involves randomly selecting
10% of all links, and then updating the cost metric by up to 10%. We
use the shortest-path random metric since it is the most demanding
in terms of bandwidth usage and convergence time.

Figure 13 plots the per-node communication overhead, when ap-
plying a batch of updates every 10 seconds. Two points are worth
noting. First, the time it takes the query to converge after a burst
of updates is well within the 5 second convergence time of running
the query from scratch (Figure 10). This is reflected in the commu-
nication overhead, which increases sharply after a burst of updates
is applied, but then disappears long before the next burst of updates
(Figure 13). Second, each burst peaks at 6kBps, which is only 32%
of the peak bandwidth and 26% of the aggregate bandwidth of the
original computation. Our results clearly demonstrate the usefulness
of performing incremental query evaluation in response to changes
in the network, as opposed to recomputing the queries from scratch.

We repeat our experiment on a more demanding update workload
(Figure 14), where we interleave update intervals that are 2 seconds
and 8 seconds, the former interval being less than the from-scratch
convergence time of 5 seconds. We observe that despite the fact that
bursts are sometimes occurring faster than queries can run, band-
width usage is similar to the less demanding update workload. When
the update interval is 2 seconds, we notice periods of sustained band-
width usage, however the peak usage remains at 6 kBps as before.



7. ADDITIONAL RELATED WORK
We mentioned most of the related work in the context of our dis-

cussion above. Here, we briefly mention some other related efforts.
We are not alone in our renewed enthusiasm for applications of

recursive queries. There are other contemporary examples from
outside the traditional database “market”, including software anal-
ysis [37], trust management [6] and diagnosis of distributed sys-
tems [2]. Our concept of link-restricted rules is similar in spirit to
d3log [19], a query language based on Datalog proposed for dy-
namic site discovery along web topologies.

Much research in the parallel execution of recursive queries [8] has
focused on high throughput within a cluster. In contrast, our strate-
gies and optimizations are geared towards bandwidth efficiency and
fast convergence in a distributed setting. Instead of hash-based par-
titioning schemes that assume full connectivity among nodes, we
are required to perform query execution only along physical net-
work links and deal with network changes during query execution.
There is also previous empirical work on the performance of paral-
lel pipelined execution of recursive queries [32]. Our results extend
that work by providing new, provably correct pipelining variants of
semi-naı̈ve evaluation.

In terms of distributed systems, the closest analog is the recent
work by Abiteboul et al. [2]. They adapt the QSQ [22] technique
to a distributed domain in order to diagnose distributed systems. An
important limitation of their approach is that they do not consider
partitioning of relations across sites as we do; they assume each
relation is stored in its entirety in one network location. Further,
they assume full connectivity and do not consider updates concur-
rent with query processing.

8. CONCLUSION
Our goal in this paper was twofold: to provide a solid database

foundation for recent developments in declarative networking, and
to open a number of database research directions in the area. We
believe that our contributions here are significant on both fronts.

We started with the concept of link-restricted rules, which cap-
ture syntactically in NDlog the notion that query messages are con-
strained to travel along direct links between nodes in a network. This
in turn led to successive refinements of semi-naı̈ve evaluation that
deal efficiently with the asynchrony and delays intrinsic to a wide-
area networking environment. We introduced techniques to incor-
porate updates immediately during execution, capturing the reactive
nature of typical network protocols while offering meaningful se-
mantic guarantees. We also discussed a number of query optimiza-
tion techniques, and their applicability to the networking domain.
Finally, we presented evaluation results from a distributed deploy-
ment involving 100 machines on the Emulab [10] network testbed,
running prototypes of our optimization techniques implemented as
modifications to the P2 system.

Our ongoing research is proceeding in several directions. First, we
are exploring a complete query optimization architecture, as well
as specific techniques beyond those of Section 5: additions to the
cost-based optimizations of Section 5.3 including the possibility of
using random walks driven by statistics on graph expansion; adap-
tive query processing techniques to react to network dynamism; and
multi-query optimizations motivated by more complex overlay net-
works. Second, we plan to incorporate negation into our model
and implementation [18], which raises interesting challenges for
pipelining and dynamic data. Third, a key selling point of declara-
tive languages in the networking community is the promise of static
program checks for desirable network protocol properties; we are
considering techniques from the Datalog literature in this regard
(e.g., [21]) and expect that the particulars of link-restricted rules
can be of use as well. Finally, we intend to aggressively pursue these
ideas in the context of serious networking applications, e.g., overlay
networks like distributed hash tables, application-level multicast pro-

tocols, and virtual private networks.
We have been pleased in this work to see that the enthusiasm in the

networking community for declarative languages can provide more
than just a well-motivated application area for recursive queries; it
appears to spark a host of new database research challenges in what
was considered a very mature area. We are optimistic about the
potential for additional significant results in this domain, in terms
both of theoretical work and systems challenges.
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APPENDIX
A. PROOFS FOR PIPELINED SEMI-NAÏVE

Symbol Representation
t A tuple generated at any iteration.
t i A tuple generated at the ith iteration.
pk The table corresponding to the kth recursive predi-

cate in the rule body.
bk A table for the kth base predicate in the rule body.

FPS(p) Result set for p using SN evaluation.
FPP(p) Result set for p using PSN evaluation.
FPi

S(p) Result set for p using SN evaluation at the ith iter-
ation or less.

FPi
P(p) Result set for p using PSN evaluation for all p tu-

ples that are marked with iteration number i or less.

Table 1: Proof Notation

In our proofs, we use the notation in Table 1. Consider a rule with
n recursive predicates p1, p2,..., pn and m base predicates:
p :−p1, p2, ..., pn,b1,b2, ...,bm.

For the purposes of the proof of Theorem 1, we assume that there
is a unique derivation for each tuple t.

Claim 2 ∀t i ∈FPi
S(p),∃t j ∈FPi−1

S (p j) s.t. t :−t1, t2, ..., tn,b1,b2, ...,bm
∧ t /∈ FPi−1

S (p). Same for FPP.

Theorem 1 FPS(p) = FPP(p)

Proof: (By induction). The base case FP0
S (p) = FP0

P(p) is trivial
since this is the initial set of input p0 tuples. Assume inductively
FPi−1

S (p) = FPi−1
P (p) is true, we show that FPi

S(p) = FPi
P(p) using

the following two lemmas below. �

Lemma 1 FPi
S(p)⊆ FPi

P(p)

Proof: Consider tuple t i ∈ FPi
S(p) derived using SN evaluation

t : −t1, t2, ..., tn,b1,b2, ...,bm. By Claim 2, t j ∈ FPi−1
S (p j) ∧ t /∈

FPi−1
S (p). One of the input t j’s (tk) must be in 4pold

k in the SN al-
gorithm. t i−1

k ∈ FPi−1
S ⇒ t i−1

k ∈ FPi−1
P . By the PSN algorithm, t i−1

j
must have been enqueued, hence generating t i. So t i ∈ FPi

S. �

Lemma 2 FPi
P(p)⊆ FPi

S(p)

Proof: Consider a tuple t i ∈ FPi
S(p) derived using modified PSN

evaluation t :−t1, t2, ..., tn,b1,b2, ...,bm. From claim 2, tk ∈FPi−1
P (pk)

∧ t /∈ FPi−1
P (p). By the PSN algorithm, one of t j’s (tk) is4told,i−1

k .
This means that t i−1

k ∈ FPi−1
S (pk)⇒ t i−1

k ∈ 4pold
k in the ith itera-

tion of the SN algorithm. This will result in the rule being used to
generate t in the ith iteration. Hence, t i ∈ FPi

S. �

If there are multiple derivations for the same tuple, we can apply
the same proof above for Theorem 1 using the following modified

PSN: if there are two derivations t i and t j ( j > i) for the same tu-
ple, the modified PSN algorithm guarantees that t i is generated by
enqueuing t i even if t j was previously generated. Note that the mod-
ified PSN algorithm leads to repeated inferences, but generates the
same results as PSN.
Theorem 2 There are no repeated inferences in computing FPP(p).
Proof: For linear rules, the theorem is trivially true since we only
add a new derived tuple into the PSN queue if it does not exist pre-
viously. This guarantees that each invocation of the rule is unique

For non-linear rules, we continue from Theorem 1’s proof. Let
ts(t) be the sequence number or timestamp of derived tuple t. Fol-
lowing the proof for Lemma 1, only the kth rule, where ts(t i−1

k ) =

max(ts(t i−1
1 ), ts(t i−1

2 ), ..., ts(t i−1
n )) will be used to generate t i

0 at the
inductive step, ensuring no repeated inferences. �

B. PROOFS FOR BURSTY UPDATES
Let E be the set of all extensional tuples that appear during the exe-

cution of a program. Let D be the set of all tuples that can be derived
from E (we assume E ⊆ D for simplicity). A tuple t ∈ D derived by
the rule t:-t1, t2, ..., tn has a corresponding tree fragment, with parent
t and children t j . The derivation tree for D is built by assembling
the tree fragments for all possible derivations of tuples in D. We
distinguish the multiple tree fragments for multiple derivations of t,
but to simplify notation, we use t, t1, . . . to name tree nodes. Leaves
of this tree are elements of E.

A series of insertions and deletions to the extensional relations is
modeled as a sequence of values t(0), . . . , t( j) for each t ∈ E, where
1 means present and 0 means absent. Similarly, for all tree nodes t,
we remember the sequence of values (presence or absence) assigned
to t by the PSN algorithm after each child change. We write t(∞) to
represent the value of t once the network has quiesced.

Let t be a tree node whose children are t1, t2, ..., tn.
Claim 3 Along any tree edge tk → t, value changes are applied in
the order in which tk’s change. This property is guaranteed by PSN’s
FIFO queue.
Lemma 3 t(∞) is derived using t1(∞), . . . , tn(∞).
Proof: (By induction) t(0) is computed from the initial values of its
children. Assume inductively that t( j− 1) is derived based on the
( j−1)th change in its children. If child tk changes, t( j) is rederived,
and based on Claim 3, reflects the latest value of tk. Hence, t(∞) is
derived from the last value of all its children. �

Let FPp be the set of tuples derived using PSN under the bursty
model, and FFPp be the set of tuples that would be computed by
PSN if starting from the quiesced state.
Theorem 3 FPp = FFPp in a centralized setting.
Proof: We write t(ω) for the values derived by PSN when its start-
ing state is e(∞) for e ∈ E. If ∀t ∈ D’s derivation tree, t(ω) = t(∞)
then FPp = FFPp. We prove this by induction on the height of
tuples in the derivation tree. We define Di to be all nodes of D’s
derivation tree at height i, with D0 = E.

In the base case, ∀t ∈ D0, t(∞) = t(ω) by definition of the base
tuple values. In the inductive step, we assume that ∀ j < i, ∀t ∈ D j,
t(∞) = t(ω). Consider t ∈ Di. Based on Lemma 3, t(∞) will be
derived from the tk(∞) values of its children, which by induction are
equal to tk(ω). Hence t(∞) = t(ω). �

Claim 4 As long as all network links obey FIFO for transmitted
messages, Claim 3 is true for any children of t that are generated
using link-restricted Datalog rules.
Theorem 4 FPp = FFPp in a distributed setting.
Proof: With Claim 4, the proof is similar to that of Theorem 3.

�


