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Where are we?

• SDL and MSC
– Notation
– Behavioral Properties
– Analysis methods

• Petri Nets
– Notation
– Behavioral Properties

• Symbolic Analysis methods of finite models

• Timed automata
– Notation
– Semantics
– Analysis

• Introduction to model checking ?
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Specification and Description Language

• SDL provides a graphical Graphic Representation (SDL/GR) as well 
as a textual Phrase Representation (SDL/PR) (same semantics!).

• ITU-T (Int. Telecom. Union - Telecom. Standardization Sector) 
Recommendation Z.100, released 1992 (corrections introduced 
1996).

• Found acceptance in industry, now revisions are mainly initiated by 
tool builders 
=> Lost a little of its clean formal basis, 

i.e. part of the semantics is tool dependent these days.

• Area of application:
– Focus on telecommunication systems, but nowadays
– process control systems, automotive applications, etc. 
– in general highly suited for (distributed real-time systems)
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SDL history (brief sketch)

• First release in 1976 using graphical syntax (orange book). The 
textual form was introduced later for machine processing. 

• The yellow book defined the process semantics

• The red book as released in 1984, it defined a SDL system’s 
structure, added data, etc.  

• The blue book released 1988 (SDL-88) gave a formal definition. 

• SDL-92 contained concepts of OO: inheritance, abstract generic 
types for blocks processes, services parameterization of instances.

• SDL-2000 is the latest released version completely based on object-
orientation. This version is accompanied by an SDL-UML-Profile.
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SDL comprises four main 
hierarchical levels: 

1. system 

2. blocks 

3. processes 

4. procedures

Overview (1): Structure of an SDL specification

system
blocks

block
processes

procedures

Informally: See it as tree structure
� the root is the system,
� the leaves are processes,
� everything in the middle is a block.
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Overview (2): Structure of an SDL specification

IEC Web tutorial (http://www.iec.org/online/tutorials/sdl/topic02.html)

• Processes are the entities which define actual behavior

• Procedures can be viewed as some mechanism for encapsulating 
(sub-)behavior to be used multiple times (~function/method). 

• Some tools allow also to call external functions, implemented in
C++ or Java
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Overview (3): Signaling within SDL (a glance)

• Processes interact via signals, the signals can be associated with 
messages (send output signals and consume input signals)

• Outputs are sent away (non-blocking).
• Each signal is buffered at the receiving process side (FIFO)!
• Signal transmission

is buffered (not immediate!)
• Routing is defined by  

– channels (on system level),

– signal routes (on block level)

block K

J

[Y]

B [X]

SIGNAL
X;

system ...

KSIGNAL
W,Y,Z; [Y]

C
P

D

[W,Z]
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Let’s start bottom-up: SDL-Processes (1)

• Processes are kind of automata 
(Extended Finite State Machines)

• Each Process has its own input queue 
(infinite storage capacity, in principle)

• A state of a process is determined by
– current state of process
– value of current variable

– contents of input queue

• state changes can be triggered by 
input messages, where a transition 
may execute the following actions:

– send output

– call procedure

– execute loop
– manipulate local variables

– create new instance of process

– …………….

X

X

or more!

one output

an enabling condition/
a continuous signal 

one input  at most

referring to the 
process’ data 
in the state X,
i.e. before the input

a few tasks
modifying the
process’ data,
should better
terminate ...

a  
tex

t e
xte

nsi
on

a  
com

me
nt
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The simplest SDL process (2)

sends signal hello and terminates. 

process B

hello

PROCESS B; 
START;
OUTPUT hello;
STOP; 

ENDPROCESS

textual’ SDL:process A

stop symbol: 
process instance 
and its associated 
input queues are 
destroyed

start symbol  (not a state), cannot wait for input

state, waits for inputs, or 'waits' for NONE, or is enabled
by a continuous signal.
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Process-interaction (1)

S1

S1

process Rec1

brown

S1

S1

brown

S1

S1

red

• S1 and S2 send 
signal brown, red
resp.

• Order of arrival at  
input queue 
depends on 
scheduling.

• Let red be first.

• But, Rec1 wants to 
consume signal 
brown not red!

Solution: Signal brown is delivered and red is dumped! 
Note: sig. red will be lost, unless it is explicitly 
saved!

process S2process S1

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/10

Process-interaction (2) : Saving and consuming inputs

W

Z

S1

X

S2

T

The ‘save’ construct yields that the 
associated signal stays in the input 
queue at the same position. Examine 
next sig. and decide what to do 
(discard/save/consume)

�
discarded

�
saved

�
discarded

�
consumed

W Y W B B X W VW

W Y W B B

Inputs are non-persistent: top elements 
are discarded  if they are unexpected

=> make use of save

Head

Tail Head

Tail

W

Saves only one signal
per save-construct!
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Process-interaction (3) : Asterisk

Z

S1

*

S2

Asterisk in inputs behaves like a wild card
=> consume any signal from queue

W �
consume

Y W B B X Y VW

HeadTail

Y W B B X Y W

HeadTail
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Process-interaction (4) : Output

• output-symbol triggers sending of a signal to a connected process

• format: name_of_signal [ list of parameters (optional) ]

• With VIA or TO route or receiver can be addressed explicitly (why?)

red VIA sr1

S1

NONE

S2

process bitmap

red TO screen

S1

NONE

S2

process bitmap

bitmap

block colors2

printer

screen

sr1

[red]

sr2 [red]

non-deterministic choice of receiver possible!

red

S1

NONE

S2

process bitmap

red

S1

NONE

S2

process bitmap
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Block level: signal routes are non-delaying
– 'implemented' by synchronization
– but the inputs are still buffered at the receiver side.

System level: channels can be
• non-delaying

– 'implemented' by synchronization

– but eventually the inputs are buffered at the receiver side!

• delaying
– 'implemented' by synchronization with another unbounded FIFO buffer in 

the middle (makes the duration of delay unpredictable).

– additionally, the inputs are buffered at the receiver side.

Process-interaction (5): Signaling on routes and channels

K P

K P

BB

Keep in mind that channels and signal routes may be uni-
directional or bidirectional.
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A data dependent process: Continuous signals (1)

non-deterministic choice

may do this, may do that

true

process D

this that

i=0 i!=0

process D
DCL
i Integer;

sends this if  i equals 0,

otherwise that.

Guarded choice

thatthis

true
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Continuous signals (2)

Idea: Trigger process behavior 
without having a new 
input into the process’
queue

S

this that

true

process E

kick

Continuous signal

1. guards the branches of input-less 
alternatives,

2. guards are Boolean conditions on         
process data, 

3. If available input signals are always 
processed first. 

4. non-determinism among various enabled 
continuous signals can be resolved by 
assigning priorities to the conditions.

Scheduling:

1. check for input signal

2. check continuous signal with Prio 1, ….
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Enabling condition

Idea: Block consumption of a signal 
when not ready

S

this that

true

process E

kick

Enabling condition

• guards an input command, i.e.

• signal can only be consumed if 
guard evaluates to true

• guard is a Boolean expression, 

• guard can not contain parameter 
of signal to be consumed ! 

false
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Time in SDL

• Some snippets from the standard:
– " Time only progresses if all input buffers are empty. "

– " Taking a transition takes a positive, but negligible amount of time. “
=> time consumption of transitions can not be modeled explicitly,

alternatives?

• Why is time interesting to discuss?
because SDL allows one to set timers and to react on timeouts, 
and allows to refer to the current time (NOW). 

this construct appears handy, and is often used. 
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Timers

process Q

G

Wait

W

SET(NOW+5,Wait)

TIMER
Wait;

1. setting a timer  Wait to NOW + 5 time 
units

2. Stay in state W until receiving timer 
signal

3. Reacting on the expiration of  timer 
Wait.

When a timer expires, a timer signal is 
inserted into the input queue of the process

Is this sufficient for specifying real-time 
systems with hard time bounds?
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Q

• Recall the process-interaction 
via buffered FIFO queues

• Expiring of a local timer just
appends a signal to the local 
input queue

• This implies that reaction to 
timeouts may not be immediate!

What happens when a timer expires

[F,G]

process Q

G

Wait

W

SET(NOW+5,Wait)      *

-

Z

F

Wait

(widely considere
d

unsatisf
actory

by practit
ioneers)

We will come back to this in the ex. class

F F F F
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SDL-Wrap-up

• SDL provides a graphical Graphic Representation (SDL/GR) and a textual 
Phrase Representation (SDL/PR) (same semantics!) for the specification 
and description of the behavior of reactive and distributed systems. 

• A system is specified as a set of interconnected abstract machines 
(processes) which are extensions of finite state machines (FSM).

• The FSM are communicating via FIFO-queues

• SDL is a formal method, i.e. a SDL system description has a unique 
interpretation (semantics). Thus it is a basis for determining the correctness 
of a specification:

– consistency of specification and designed system
– verification of a specification, does it fulfill some dedicated properties 

• To some extend SDL guarantees the above features also for the  
implementation, due to :

– automatic generation of code.
– automatic generation of test cases

We will come back

to this latte
r,

when validating SDL-specs



Discrete Event Systems – R. Wattenhofer / K. Lampka 3/21

MSC: Message Sequence Chart

• Standardized language for describing interaction among concurrent 
processes

• complements the description of a system,

• Most high-level modeling formalisms are state-based, and correspond to 
executable specifications  (not only the ones we discuss here like SDL, PNs 
and TAs)

=> Often difficult to capture “informal” initial sketches.

• Therefore MSCs are often used for defining 

– Use- or Test-cases

– Scenario-based requirements modeling which seems in particular of value for 
early design stages of systems. Furthermore MSC is often used for

– documentation purpose

• UML-Sequence charts are based on MSCs, which is one of its  heavier 
used parts.
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MSC: Message Sequence Charts

• MSCs are precedence graphs 

with locality information

• Each process instance has its 

own time line

• each vertical line represents a 

process (or the environment)

• the arrows represent 

signals/messages
the blocks represent (internal) 

process activities
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MSC: Message Sequence Charts

• time evolves along time lines of 

processes from top to bottom

=> events on the same 

time-line are totally ordered

• Model of communication: 

asynchronous FIFO channels, 
messages can overtake each 

other

• Sending and Receiving of a 

message is ordered
=> partial order on set of events
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Recall definition of partial order?

• A relation is a set of pairs drawn from some set, say E.

• A reflexive relation is a relation that contains the pair (e,e) for each 

element e of E.

• A transitive relation is a relation which contains the pair (e,g) 

whenever it contains both (e,f) and (f,g).

• A partial order is a reflexive and transitive relation.

• A total order is a partial order which for each pair (e,f)  of E (with 

e≠f) does either contain (e,f) or (f,e) - but not both.
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Traces?

MSC – Did we specify the same scenario?
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Definition:  Basic MSC
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Traces?

Traces?Traces?

MSC - How simple!

=

≠
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Semantics of Basic MSC

• < *, the transitive closure of <, defines a partial order on E

• A trace of MSC M is a linearization of the partial order <*. 
– every trace is a finite sequence of events that “obeys” the precedence. 
– each event occurs exactly once in a trace and only after all its preceding 

events have already occurred in the trace so far.
– always finite.

• Semantics of MSC M 
– is the set of all possible traces.

– can be represented as a finite LTS (Labeled Transition System). 
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MSC: Timers

• Each timer is associated 
with a particular instance 
of a process

• Once it expires it triggers 
some action, i.e. sending 
of a signal.

• Like in SDL timer signals 
are queued 
=> reaction might be 

delayed

MSC

A

ev2

Req1

result1

Req2

result1

Ack

reset timer

C

ev1

start timer

timer expired

start timer

finished
Ack

restart timer

timer reset

finished
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process Q

G

Wait

W

SET(NOW+5,Wait)      *

-

Z

F

MSC: Timers, an example
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MSC and SDL

• SDL has from the very beginning been devised                    
in combination with MSC (ITU standard Z.100/Z.120) 

• Within SDL, MSC are used
– for requirements engineering 

– for test case engineering

– as example scenarios which the SDL system is supposed to comply to 

– as a logging means for traces generated from an SDL system

• MSC has spinned off as a requirements engineering 
formalism. 
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What next?

By now it should be clear that the the design of concurrent system is difficult 
and error-prone and often leads to inconsistent system behaviors with 
respect to the desired or required behavior. 

This is often a threat in real life and not acceptable�

How can we check for inconsistency?

Look for 
• safety violations like deadlocks,  
• progress violations like livelocks

Visual inspection is infeasible!



Discrete Event Systems – R. Wattenhofer / K. Lampka 3/33

TAU-Engine 

NO YES

Computer-assisted verification (The TAU-tool suite)

formal description  
of system (SDL spec.)

formal description of
req. (set of MSCs) 

modification next
requirement

done

requirement real system

specification formalization
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Tau-assisted verification
Does a design D satisfy a requirement φφφφ?

• The Tau tool supports simulation, and some rudimentary form of state 
space exploration

• Simulation: generates traces through the state space
– user-driven (that’s not really verification, but useful)

• State Space Exploration:
– explores 

• randomly (driven by a pseudo random number generator), or

• exhaustively up to a given depth.

– checks
• whether the encountered states satisfy some (built in) sanity requirements, 

which are some simple safety properties.

• whether a given MSC (requirement) can be generated.
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Variable abstraction in Tau

• Assume that you are validating a property which is independent of the exact 
values of the process variables

• Further assume that your SDL specification contains masses of variables used 
for purposes like 

– counting messages,

– computing results,

– logging information,

– etc .

• It seems a good idea not to care about the variables in the property specific 
verification

=> This is the essence of variable abstraction, and it is supported manually in Tau. The 
user has the opportunity to mask variables he guesses to be irrelevant for the 
verification.

( )Vice-versa it could also be the case that one simply assumes 
that variables are within some intervals => abstract interpretation
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Simulation and verification within Tau.

how much of a 
specification has been 
visited in the current 
simulation or 
verification run. 

• BUT, the presented 
data refers to the 
executed transitions 
and the visited states 
of the specification

(=> coverage rate)

• Is this sufficient?

• The simulator and validator explore the state space and allow one to view
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State - and transition coverage refer to the specification level.
=> Simulator and Validator explore the state space (in parts only!).

• From the TAU
tool documentation

• This is misleading! Due to concurrency, it is very well possible
– to have a specification that is wrong (e.g. deadlocks), but a fragment of 

the state space with 100% of the transitions/states covered does not show 
this deadlock.  

– to  have a specification that works 100% correct,               
but where less that 100% of the specification are covered. 

State - and transition coverage vs. State space coverage

Symbol coverage : 100.00
All SDL symbols in the system were executed during the 
exploration. If the symbol coverage is not 100% the validation 
cannot be considered finished….. 

Remark: here validation has to be read as verification.
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What to do with a verified SDL spec? 

Implement the system in software (and/or hardware, sometimes).

Do this

• automatically (code generation)
– is supported by the Tau tool;

– is often considered inefficient;
One reason: Buffer-based communication disturbing in non-distributed 
implementations of SDL blocks;

or

• manually 
– specification is reference for the implementers,

– specification can provide test-suites for the running code
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Reuse

The Relations between Different Languages and SDL/MSC 

IEC Web tutorial (http://www.iec.org/online/tutorials/sdl/topic02.html)

MSC: Message
Sequence Chart

UML: Unified
modeling language

ASN.1: Abstract
Syntax Notations

Product

SDL

Test System

TTCN: Testing &
test control notation

Requirements
capture

Requirements
capture

Requirements
capture

Reuse

verification
verification

Conformance Test

Code
generation

Test generation
Code

generation
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