
Discrete Event Systems – R. Wattenhofer / K. Lampka 3/1

Where are we?

• SDL and MSC
– Notation
– Behavioral Properties
– Analysis methods

• Petri Nets
– Notation
– Behavioral Properties

• Symbolic Analysis methods of finite models

• Timed automata
– Notation
– Semantics
– Analysis

• Introduction to model checking ?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/2

Specification and Description Language

• SDL provides a graphical Graphic Representation (SDL/GR) as well
as a textual Phrase Representation (SDL/PR) (same semantics!).

• ITU-T (Int. Telecom. Union - Telecom. Standardization Sector)
Recommendation Z.100, released 1992 (corrections introduced
1996).

• Found acceptance in industry, now revisions are mainly initiated by
tool builders
=> Lost a little of its clean formal basis,

i.e. part of the semantics is tool dependent these days.

• Area of application:
– Focus on telecommunication systems, but nowadays
– process control systems, automotive applications, etc.
– in general highly suited for (distributed real-time systems)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/3

SDL history (brief sketch)

• First release in 1976 using graphical syntax (orange book). The
textual form was introduced later for machine processing.

• The yellow book defined the process semantics

• The red book as released in 1984, it defined a SDL system’s
structure, added data, etc.

• The blue book released 1988 (SDL-88) gave a formal definition.

• SDL-92 contained concepts of OO: inheritance, abstract generic
types for blocks processes, services parameterization of instances.

• SDL-2000 is the latest released version completely based on object-
orientation. This version is accompanied by an SDL-UML-Profile.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/4

SDL comprises four main
hierarchical levels:

1. system

2. blocks

3. processes

4. procedures

Overview (1): Structure of an SDL specification

system
blocks

block
processes

procedures

Informally: See it as tree structure
� the root is the system,
� the leaves are processes,
� everything in the middle is a block.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/5

Overview (2): Structure of an SDL specification

IEC Web tutorial (http://www.iec.org/online/tutorials/sdl/topic02.html)

• Processes are the entities which define actual behavior

• Procedures can be viewed as some mechanism for encapsulating
(sub-)behavior to be used multiple times (~function/method).

• Some tools allow also to call external functions, implemented in
C++ or Java

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/6

Overview (3): Signaling within SDL (a glance)

• Processes interact via signals, the signals can be associated with
messages (send output signals and consume input signals)

• Outputs are sent away (non-blocking).
• Each signal is buffered at the receiving process side (FIFO)!
• Signal transmission

is buffered (not immediate!)
• Routing is defined by

– channels (on system level),

– signal routes (on block level)

block K

J

[Y]

B [X]

SIGNAL
X;

system ...

KSIGNAL
W,Y,Z; [Y]

C
P

D

[W,Z]

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/7

Let’s start bottom-up: SDL-Processes (1)

• Processes are kind of automata
(Extended Finite State Machines)

• Each Process has its own input queue
(infinite storage capacity, in principle)

• A state of a process is determined by
– current state of process
– value of current variable

– contents of input queue

• state changes can be triggered by
input messages, where a transition
may execute the following actions:

– send output

– call procedure

– execute loop
– manipulate local variables

– create new instance of process

– …………….

X

X

or more!

one output

an enabling condition/
a continuous signal

one input at most

referring to the
process’ data
in the state X,
i.e. before the input

a few tasks
modifying the
process’ data,
should better
terminate ...

a
tex

t e
xte

nsi
on

a
com

me
nt

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/8

The simplest SDL process (2)

sends signal hello and terminates.

process B

hello

PROCESS B;
START;
OUTPUT hello;
STOP;

ENDPROCESS

textual’ SDL:process A

stop symbol:
process instance
and its associated
input queues are
destroyed

start symbol (not a state), cannot wait for input

state, waits for inputs, or 'waits' for NONE, or is enabled
by a continuous signal.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/9

Process-interaction (1)

S1

S1

process Rec1

brown

S1

S1

brown

S1

S1

red

• S1 and S2 send
signal brown, red
resp.

• Order of arrival at
input queue
depends on
scheduling.

• Let red be first.

• But, Rec1 wants to
consume signal
brown not red!

Solution: Signal brown is delivered and red is dumped!
Note: sig. red will be lost, unless it is explicitly
saved!

process S2process S1

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/10

Process-interaction (2) : Saving and consuming inputs

W

Z

S1

X

S2

T

The ‘save’ construct yields that the
associated signal stays in the input
queue at the same position. Examine
next sig. and decide what to do
(discard/save/consume)

�
discarded

�
saved

�
discarded

�
consumed

W Y W B B X W VW

W Y W B B

Inputs are non-persistent: top elements
are discarded if they are unexpected

=> make use of save

Head

Tail Head

Tail

W

Saves only one signal
per save-construct!

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/11

Process-interaction (3) : Asterisk

Z

S1

*

S2

Asterisk in inputs behaves like a wild card
=> consume any signal from queue

W �
consume

Y W B B X Y VW

HeadTail

Y W B B X Y W

HeadTail

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/12

Process-interaction (4) : Output

• output-symbol triggers sending of a signal to a connected process

• format: name_of_signal [list of parameters (optional)]

• With VIA or TO route or receiver can be addressed explicitly (why?)

red VIA sr1

S1

NONE

S2

process bitmap

red TO screen

S1

NONE

S2

process bitmap

bitmap

block colors2

printer

screen

sr1

[red]

sr2 [red]

non-deterministic choice of receiver possible!

red

S1

NONE

S2

process bitmap

red

S1

NONE

S2

process bitmap

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/13

Block level: signal routes are non-delaying
– 'implemented' by synchronization
– but the inputs are still buffered at the receiver side.

System level: channels can be
• non-delaying

– 'implemented' by synchronization

– but eventually the inputs are buffered at the receiver side!

• delaying
– 'implemented' by synchronization with another unbounded FIFO buffer in

the middle (makes the duration of delay unpredictable).

– additionally, the inputs are buffered at the receiver side.

Process-interaction (5): Signaling on routes and channels

K P

K P

BB

Keep in mind that channels and signal routes may be uni-
directional or bidirectional.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/14

A data dependent process: Continuous signals (1)

non-deterministic choice

may do this, may do that

true

process D

this that

i=0 i!=0

process D
DCL
i Integer;

sends this if i equals 0,

otherwise that.

Guarded choice

thatthis

true

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/15

Continuous signals (2)

Idea: Trigger process behavior
without having a new
input into the process’
queue

S

this that

true

process E

kick

Continuous signal

1. guards the branches of input-less
alternatives,

2. guards are Boolean conditions on
process data,

3. If available input signals are always
processed first.

4. non-determinism among various enabled
continuous signals can be resolved by
assigning priorities to the conditions.

Scheduling:

1. check for input signal

2. check continuous signal with Prio 1, ….

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/16

Enabling condition

Idea: Block consumption of a signal
when not ready

S

this that

true

process E

kick

Enabling condition

• guards an input command, i.e.

• signal can only be consumed if
guard evaluates to true

• guard is a Boolean expression,

• guard can not contain parameter
of signal to be consumed !

false

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/17

Time in SDL

• Some snippets from the standard:
– " Time only progresses if all input buffers are empty. "

– " Taking a transition takes a positive, but negligible amount of time. “
=> time consumption of transitions can not be modeled explicitly,

alternatives?

• Why is time interesting to discuss?
because SDL allows one to set timers and to react on timeouts,
and allows to refer to the current time (NOW).

this construct appears handy, and is often used.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/18

Timers

process Q

G

Wait

W

SET(NOW+5,Wait)

TIMER
Wait;

1. setting a timer Wait to NOW + 5 time
units

2. Stay in state W until receiving timer
signal

3. Reacting on the expiration of timer
Wait.

When a timer expires, a timer signal is
inserted into the input queue of the process

Is this sufficient for specifying real-time
systems with hard time bounds?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/19

Q

• Recall the process-interaction
via buffered FIFO queues

• Expiring of a local timer just
appends a signal to the local
input queue

• This implies that reaction to
timeouts may not be immediate!

What happens when a timer expires

[F,G]

process Q

G

Wait

W

SET(NOW+5,Wait) *

-

Z

F

Wait

(widely considere
d

unsatisf
actory

by practit
ioneers)

We will come back to this in the ex. class

F F F F

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/20

SDL-Wrap-up

• SDL provides a graphical Graphic Representation (SDL/GR) and a textual
Phrase Representation (SDL/PR) (same semantics!) for the specification
and description of the behavior of reactive and distributed systems.

• A system is specified as a set of interconnected abstract machines
(processes) which are extensions of finite state machines (FSM).

• The FSM are communicating via FIFO-queues

• SDL is a formal method, i.e. a SDL system description has a unique
interpretation (semantics). Thus it is a basis for determining the correctness
of a specification:

– consistency of specification and designed system
– verification of a specification, does it fulfill some dedicated properties

• To some extend SDL guarantees the above features also for the
implementation, due to :

– automatic generation of code.
– automatic generation of test cases

We will come back

to this latte
r,

when validating SDL-specs

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/21

MSC: Message Sequence Chart

• Standardized language for describing interaction among concurrent
processes

• complements the description of a system,

• Most high-level modeling formalisms are state-based, and correspond to
executable specifications (not only the ones we discuss here like SDL, PNs
and TAs)

=> Often difficult to capture “informal” initial sketches.

• Therefore MSCs are often used for defining

– Use- or Test-cases

– Scenario-based requirements modeling which seems in particular of value for
early design stages of systems. Furthermore MSC is often used for

– documentation purpose

• UML-Sequence charts are based on MSCs, which is one of its heavier
used parts.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/22

MSC: Message Sequence Charts

• MSCs are precedence graphs

with locality information

• Each process instance has its

own time line

• each vertical line represents a

process (or the environment)

• the arrows represent

signals/messages
the blocks represent (internal)

process activities

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/23

MSC: Message Sequence Charts

• time evolves along time lines of

processes from top to bottom

=> events on the same

time-line are totally ordered

• Model of communication:

asynchronous FIFO channels,
messages can overtake each

other

• Sending and Receiving of a

message is ordered
=> partial order on set of events

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/24

Recall definition of partial order?

• A relation is a set of pairs drawn from some set, say E.

• A reflexive relation is a relation that contains the pair (e,e) for each

element e of E.

• A transitive relation is a relation which contains the pair (e,g)

whenever it contains both (e,f) and (f,g).

• A partial order is a reflexive and transitive relation.

• A total order is a partial order which for each pair (e,f) of E (with

e≠f) does either contain (e,f) or (f,e) - but not both.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/25

Traces?

MSC – Did we specify the same scenario?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/26

Definition: Basic MSC

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/27

Traces?

Traces?Traces?

MSC - How simple!

=

≠

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/28

Semantics of Basic MSC

• < *, the transitive closure of <, defines a partial order on E

• A trace of MSC M is a linearization of the partial order <*.
– every trace is a finite sequence of events that “obeys” the precedence.
– each event occurs exactly once in a trace and only after all its preceding

events have already occurred in the trace so far.
– always finite.

• Semantics of MSC M
– is the set of all possible traces.

– can be represented as a finite LTS (Labeled Transition System).

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/29

MSC: Timers

• Each timer is associated
with a particular instance
of a process

• Once it expires it triggers
some action, i.e. sending
of a signal.

• Like in SDL timer signals
are queued
=> reaction might be

delayed

MSC

A

ev2

Req1

result1

Req2

result1

Ack

reset timer

C

ev1

start timer

timer expired

start timer

finished
Ack

restart timer

timer reset

finished

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/30

process Q

G

Wait

W

SET(NOW+5,Wait) *

-

Z

F

MSC: Timers, an example

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/31

MSC and SDL

• SDL has from the very beginning been devised
in combination with MSC (ITU standard Z.100/Z.120)

• Within SDL, MSC are used
– for requirements engineering

– for test case engineering

– as example scenarios which the SDL system is supposed to comply to

– as a logging means for traces generated from an SDL system

• MSC has spinned off as a requirements engineering
formalism.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/32

What next?

By now it should be clear that the the design of concurrent system is difficult
and error-prone and often leads to inconsistent system behaviors with
respect to the desired or required behavior.

This is often a threat in real life and not acceptable�

How can we check for inconsistency?

Look for
• safety violations like deadlocks,
• progress violations like livelocks

Visual inspection is infeasible!

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/33

TAU-Engine

NO YES

Computer-assisted verification (The TAU-tool suite)

formal description
of system (SDL spec.)

formal description of
req. (set of MSCs)

modification next
requirement

done

requirement real system

specification formalization

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/34

Tau-assisted verification
Does a design D satisfy a requirement φφφφ?

• The Tau tool supports simulation, and some rudimentary form of state
space exploration

• Simulation: generates traces through the state space
– user-driven (that’s not really verification, but useful)

• State Space Exploration:
– explores

• randomly (driven by a pseudo random number generator), or

• exhaustively up to a given depth.

– checks
• whether the encountered states satisfy some (built in) sanity requirements,

which are some simple safety properties.

• whether a given MSC (requirement) can be generated.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/35

Variable abstraction in Tau

• Assume that you are validating a property which is independent of the exact
values of the process variables

• Further assume that your SDL specification contains masses of variables used
for purposes like

– counting messages,

– computing results,

– logging information,

– etc .

• It seems a good idea not to care about the variables in the property specific
verification

=> This is the essence of variable abstraction, and it is supported manually in Tau. The
user has the opportunity to mask variables he guesses to be irrelevant for the
verification.

()Vice-versa it could also be the case that one simply assumes
that variables are within some intervals => abstract interpretation

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/36

Simulation and verification within Tau.

how much of a
specification has been
visited in the current
simulation or
verification run.

• BUT, the presented
data refers to the
executed transitions
and the visited states
of the specification

(=> coverage rate)

• Is this sufficient?

• The simulator and validator explore the state space and allow one to view

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/37

State - and transition coverage refer to the specification level.
=> Simulator and Validator explore the state space (in parts only!).

• From the TAU
tool documentation

• This is misleading! Due to concurrency, it is very well possible
– to have a specification that is wrong (e.g. deadlocks), but a fragment of

the state space with 100% of the transitions/states covered does not show
this deadlock.

– to have a specification that works 100% correct,
but where less that 100% of the specification are covered.

State - and transition coverage vs. State space coverage

Symbol coverage : 100.00
All SDL symbols in the system were executed during the
exploration. If the symbol coverage is not 100% the validation
cannot be considered finished…..

Remark: here validation has to be read as verification.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/38

What to do with a verified SDL spec?

Implement the system in software (and/or hardware, sometimes).

Do this

• automatically (code generation)
– is supported by the Tau tool;

– is often considered inefficient;
One reason: Buffer-based communication disturbing in non-distributed
implementations of SDL blocks;

or

• manually
– specification is reference for the implementers,

– specification can provide test-suites for the running code

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/39

Reuse

The Relations between Different Languages and SDL/MSC

IEC Web tutorial (http://www.iec.org/online/tutorials/sdl/topic02.html)

MSC: Message
Sequence Chart

UML: Unified
modeling language

ASN.1: Abstract
Syntax Notations

Product

SDL

Test System

TTCN: Testing &
test control notation

Requirements
capture

Requirements
capture

Requirements
capture

Reuse

verification
verification

Conformance Test

Code
generation

Test generation
Code

generation

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/40

Acknowledgment and Literature

• Acknowledgements:
The presented slides contain material of Prof. H. Hermanns (Univ. des Saarlandes)
and Prof. M. Siegle (Univ. der Bundeswehr Muenchen), who kindly approved this.

• Literature
– TIMe Electronic Textbook version 4.0 September 1999

• Chapter 13: Tutorial on SDL
http://www.sintef.no/time/ELB40/ELB/SDL/SDL.pdf

• Chapter 14: Tutorial on MSC-96
http://www.sintef.no/time/ELB40/ELB/MSC96/MSC96.pdf

– L. Doldi:
Validation of communications systems with SDL :
the art of SDL simulation and reachability analysis, Chichester Wiley, 2003
Zugriff über: http://www3.interscience.wiley.com/cgi-bin/bookhome/109867833

• More information can be found @
– http://www.sdl-forum.org
– http://www.iec.org/online/tutorials/sdl/

