Geo-Routing

Chapter 3

Rating

- Area maturity

- Practical importance

No apps

- Theoretical importance

Overview

- Classic routing overview
- Geo-routing
- Greedy geo-routing
- Euclidean and planar graphs
- Face Routing
- Greedy and Face Routing
- 3D Geo-Routing
- Geometric Routing without Geometry

Classic Routing 1: Flooding

- What is Routing?
- „Routing is the act of moving information across a network from a source to a destination." (CISCO)
- The simplest form of routing is "flooding": a source s sends the message to all its neighbors; when a node other than destination t receives the message the first time it re-sends it to all its neighbors.
+ simple (sequence numbers)
- a node might see the same message more than once. (How often?)
- what if the network is huge but the target t sits just next to the source s ?
- We need a smarter routing algorithm

Classic Routing 2: Link-State Routing Protocols

- Link-state routing protocols are a preferred iBGP method (within an autonomous system) in the Internet
- Idea: periodic notification of all nodes about the complete graph
- Routers then forward a message along (for example) the shortest path in the graph
+ message follows shortest path
- every node needs to store whole graph, even links that are not on any path
- every node needs to send and receive messages that describe the whole graph regularly

Classic Routing 3: Distance Vector Routing Protocols

- The predominant method for wired networks
- Idea: each node stores a routing table that has an entry to each destination (destination, distance, neighbor)
- If a router notices a change in its neighborhood or receives an update message from a neighbor, it updates its routing table accordingly and sends an update to all its neighbors
+ message follows shortest path
+ only send updates when topology changes
- most topology changes are irrelevant for a given source/destination pair
- every node needs to store a big table
- count-to-infinity problem

Dest	Dir	Dst
a	a	1
b	b	1
c	b	2
t	b	2

Discussion of Classic Routing Protocols

- Proactive Routing Protocols
- Both link-state and distance vector are "proactive," that is, routes are established and updated even if they are never needed.
- If there is almost no mobility, proactive algorithms are superior because they never have to exchange information and find optimal routes easily.
- Reactive Routing Protocols
- Flooding is "reactive," but does not scale
- If mobility is high and data transmission rare, reactive algorithms are superior; in the extreme case of almost no data and very much mobility the simple flooding protocol might be a good choice.

There is no "optimal" routing protocol; the choice of the routing protocol depends on the circumstances. Of particular importance is the mobility/data ratio.

Routing in Ad-Hoc Networks

- Reliability
- Nodes in an ad-hoc network are not 100\% reliable
- Algorithms need to find alternate routes when nodes are failing
- Mobile Ad-Hoc Network (MANET)
- It is often assumed that the nodes are mobile ("Moteran")
- 10 Tricks $\rightarrow 2^{10}$ routing algorithms
- In reality there are almost that many proposals!
- Q: How good are these routing algorithms?!? Any hard results?
- A: Almost none! Method-of-choice is simulation...
- "If you simulate three times, you get three different results"

Geometric (geographic, directional, position-based) routing

- ...even with all the tricks there will be flooding every now and then.
- In this chapter we will assume that the nodes are location aware (they have GPS, Galileo, or an ad-hoc way to figure out their coordinates), and that we know where the destination is.
- Then we simply route towards the destination

Geometric routing

- Problem: What if there is no path in the right direction?
- We need a guaranteed way to reach a destination even in the case when there is no directional path...
- Hack: as in flooding nodes keep track of the messages they have already seen, and then they backtrack* from there
*backtracking? Does this mean that we need a stack?!?

Geo-Routing: Strictly Local

Greedy Geo-Routing?

Greedy Geo-Routing?

What is Geographic Routing?

- A.k.a. geometric, location-based, position-based, etc.
- Each node knows its own position and position of neighbors
- Source knows the position of the destination
- No routing tables stored in nodes!
- Geographic routing makes sense
- Own position: GPS/Galileo, local positioning algorithms
- Destination: Geocasting, location services, source routing++
- Learn about ad-hoc routing in general

Greedy routing

- Greedy routing looks promising.
- Maybe there is a way to choose the next neighbor and a particular graph where we always reach the destination?

Examples why greedy algorithms fail

- We greedily route to the neighbor which is closest to the destination: But both neighbors of x are not closer to destination D
- Also the best angle approach might fail, even in a triangulation: if, in the example on the right, you always follow the edge with the narrowest angle to destination t, you will forward on a loop $\mathrm{v}_{0}, \mathrm{w}_{0}, \mathrm{v}_{1}, \mathrm{w}_{1}, \ldots, \mathrm{v}_{3}, \mathrm{w}_{3}, \mathrm{v}_{0}, \ldots$

Euclidean and Planar Graphs

- Euclidean: Points in the plane, with coordinates
- Planar: can be drawn without "edge crossings" in a plane

- Euclidean planar graphs (planar embeddings) simplify geometric routing.

Unit disk graph

- We are given a set V of nodes in the plane (points with coordinates).
- The unit disk graph $U D G(V)$ is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u, v iff the Euclidean distance between u and v is at most 1 .
- Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph $U D G$ is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduce complexity?

Planar graphs

- Definition: A planar graph is a graph that can be drawn in the plane such that its edges only intersect at their common end-vertices.

- Kuratowski's Theorem: A graph is planar iff it contains no subgraph that is edge contractible to K_{5} or $K_{3,3}$.
- Euler's Polyhedron Formula: A connected planar graph with n nodes, m edges, and f faces has $n-m+f=2$.
- Right: Example with 9 vertices, 14 edges, and 7 faces (the yellow "outside" face is called the infinite face)
- Theorem: A simple planar graph with n nodes has at most $3 n-6$ edges, for $n \geq 3$.

Gabriel Graph

- Let $\operatorname{disk}(u, v)$ be a disk with diameter (u, v) that is determined by the two points u, v.
- The Gabriel Graph $G G(V)$ is defined as an undirected graph (with E being a set of undirected edges). There is an
 edge between two nodes u, v iff the disk (u, v) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

Delaunay Triangulation

- Let disk($u, v, w)$ be a disk defined by the three points u, v, w.
- The Delaunay Triangulation (Graph) $\mathrm{DT}(V)$ is defined as an undirected graph (with E being a set of undirected edges). There is a triangle of edges between three nodes u, v, w iff the disk (u, v, w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path ($\mathrm{s}, \ldots, \mathrm{t}$) on the DT is within a constant factor of the s-t distance.

Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge e $=(u, v)$ is in the $R N G(V)$ iff there is no node w with $(u, w)<(u, v)$ and $(\mathrm{v}, \mathrm{w})<(\mathrm{u}, \mathrm{v})$.

- Minimum Spanning Tree MST(V)
- A subset of E of G of minimum weight which forms a tree on V.

Properties of planar graphs

- Theorem 1:
$\operatorname{MST}(V) \subseteq \mathrm{RNG}(V) \subseteq \mathrm{GG}(V) \subseteq \mathrm{DT}(V)$
- Corollary:

Since the MST (V) is connected and the $\mathrm{DT}(\mathrm{V})$ is planar, all the planar graphs in Theorem 1 are connected and planar.

- Theorem 2:

The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent $\alpha \geq 2$)

- Corollary: $G G(V) \cap U D G(V)$ contains the Minimum Energy Path in UDG(V)

Routing on Delaunay Triangulation?

- Let d be the Euclidean distance of source s and destination t
- Let c be the sum of the distances of the links of the shortest path in the Delaunay Triangulation
- It was shown that $c=\Theta(d)$

- Three problems:

1) How do we find this best route in the DT? With flooding?!?
2) How do we find the DT at all in a distributed fashion?
3) Worse: The DT contains edges that are not in the UDG, that is, nodes that cannot receive each other are "neighbors" in the DT

Breakthrough idea: route on faces

- Remember the faces...
- Idea:

Route along the boundaries of the faces that lie on the source-destination line

Face Routing

0 . Let f be the face incident to the source s , intersected by (s, t)

1. Explore the boundary of f; remember the point p where the boundary intersects with (s,t) which is nearest to t; after traversing the whole boundary, go back to p, switch the face, and repeat 1 until you hit destination t.

Face Routing Works on Any Graph

Face Routing Properties

- All necessary information is stored in the message
- Source and destination positions
- Point of transition to next face
- Completely local:
- Knowledge about direct neighbors' positions sufficient
- Faces are implicit

"Right Hand Rule"
- Planarity of graph is computed locally (not an assumption)
- Computation for instance with Gabriel Graph

Face routing is correct

- Theorem: Face routing terminates on any simple planar graph in $\mathrm{O}(\mathrm{n})$ steps, where n is the number of nodes in the network
- Proof: A simple planar graph has at most $3 n-6$ edges. You leave each face at the point that is closest to the destination, that is, you never visit a face twice, because you can order the faces that intersect the source-destination line on the exit point. Each edge is in at most 2 faces. Therefore each edge is visited at most 4 times. The algorithm terminates in $O(n)$ steps.

Is there something better than Face Routing?

- How to improve face routing? A proposal called "Face Routing 2"
- Idea: Don't search a whole face for the best exit point, but take the first (better) exit point you find. Then you don't have to traverse huge faces that point away from the destination.
- Efficiency: Seems to be practically more efficient than face routing. But the theoretical worst case is worse - $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- Problem: if source and destination are very close, we don't want to route through all nodes of the network. Instead we want a routing algorithm where the cost is a function of the cost of the best route in the unit disk graph (and independent of the number of nodes).

Face Routing

- Theorem: Face Routing reaches destination in $\mathrm{O}(\mathrm{n})$ steps
- But: Can be very bad compared to the optimal route

Bounding Searchable Area

Adaptive Face Routing (AFR)

- Idea: Use face routing together with ad hoc routing trick 1!!
- That is, don't route beyond some radius r by branching the planar graph within an ellipse of exponentially growing size.

AFR Example Continued

- We grow the ellipse and find a path

AFR Pseudo-Code

0. Calculate $\mathrm{G}=\mathrm{GG}(\mathrm{V}) \cap \mathrm{UDG}(\mathrm{V})$ Set c to be twice the Euclidean source-destination distance.
1. Nodes $w \in W$ are nodes where the path $s-w$-t is larger than c. Do face routing on the graph G, but without visiting nodes in W . (This is like pruning the graph G with an ellipse.) You either reach the destination, or you are stuck at a face (that is, you do not find a better exit point.)
2. If step 1 did not succeed, double c and go back to step 1 .

- Note: All the steps can be done completely locally, and the nodes need no local storage.

The $\Omega(1)$ Model

- We simplify the model by assuming that nodes are sufficiently far apart; that is, there is a constant d_{0} such that all pairs of nodes have at least distance d_{0}. We call this the $\Omega(1)$ model.
- This simplification is natural because nodes with transmission range 1 (the unit disk graph) will usually not "sit right on top of each other".
- Lemma: In the $\Omega(1)$ model, all natural cost models (such as the Euclidean distance, the energy metric, the link distance, or hybrids of these) are equal up to a constant factor.
- Remark: The properties we use from the $\Omega(1)$ model can also be established with a backbone graph construction.

Analysis of AFR in the $\Omega(1)$ model

- Lemma 1: In an ellipse of size c there are at most $O\left(c^{2}\right)$ nodes.
- Lemma 2: In an ellipse of size c, face routing terminates in $\mathrm{O}\left(\mathrm{c}^{2}\right)$ steps, either by finding the destination, or by not finding a new face.
- Lemma 3: Let the optimal source-destination route in the UDG have cost c^{*}. Then this route c^{*} must be in any ellipse of size c^{*} or larger.
- Theorem: AFR terminates with cost $\mathrm{O}\left(\mathrm{c}^{* 2}\right)$.
- Proof: Summing up all the costs until we have the right ellipse size is bounded by the size of the cost of the right ellipse size.
- The network on the right constructs a lower bound.
- The destination is the center of the circle, the source any node on the ring.
- Finding the right chain costs $\Omega\left(\mathrm{c}^{*}\right)$, even for randomized algorithms
- Theorem:

AFR is asymptotically optimal.

Non-geometric routing algorithms

- In the $\Omega(1)$ model, a standard flooding algorithm enhanced with trick 1 will (for the same reasons) also cost $\mathrm{O}\left(\mathrm{c}^{* 2}\right)$.
- However, such a flooding algorithm needs $\mathrm{O}(1)$ extra storage at each node (a node needs to know whether it has already forwarded a message).
- Therefore, there is a trade-off between $\mathrm{O}(1)$ storage at each node or that nodes are location aware, and also location aware about the destination. This is intriguing.

GOAFR - Greedy Other Adaptive Face Routing

- Back to geometric routing...
- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
- Route greedily as long as possible
- Circumvent "dead ends" by use of face routing
- Then route greedily again

Other AFR: In each face proceed to node closest to destination

GOAFR+

- GOAFR+ improvements:
- Early fallback to greedy routing
- (Circle centered at destination instead of ellipse)

Early Fallback to Greedy Routing?

- We could fall back to greedy routing as soon as we are closer to t than the local minimum
- But:

- "Maze" with $\Omega\left(\mathrm{c}^{* 2}\right)$ edges is traversed $\Omega\left(\mathrm{c}^{*}\right)$ times $\rightarrow \Omega\left(\mathrm{c}^{* 3}\right)$ steps

GOAFR - Greedy Other Adaptive Face Routing

- Early fallback to greedy routing:
- Use counters p and q. Let u be the node where the exploration of the current face F started
- p counts the nodes closer to than u
- q counts the nodes not closer to t than u
- Fall back to greedy routing as soon as $p>\sigma \cdot q$ (constant $\sigma>0)$

Theorem: GOAFR is still asymptotically worst-case optimal... ...and it is efficient in practice, in the average-case.

- What does "practice" mean?
- Usually nodes placed uniformly at random

Average Case

- Not interesting when graph not dense enough
- Not interesting when graph is too dense
- Critical density range ("percolation")
- Shortest path is significantly longer than Euclidean distance

Critical Density: Shortest Path vs. Euclidean Distance

- Shortest path is significantly longer than Euclidean distance

- Critical density range mandatory for the simulation of any routing algorithm (not only geographic)

Randomly Generated Graphs: Critical Density Range

Simulation on Randomly Generated Graphs

A Word on Performance

- What does a performance of 3.3 in the critical density range mean?
- If an optimal path (found by Dijkstra) has cost c, then GOAFR+ finds the destination in 3.3.c steps.
- It does not mean that the path found is 3.3 times as long as the optimal path! The path found can be much smaller...
- Remarks about cost metrics
- In this lecture "cost" c = c hops
- There are other results, for instance on distance/energy/hybrid metrics
- In particular: With energy metric there is no competitive geometric routing algorithm

Energy Metric Lower Bound

Example graph: k "stalks", of which only one leads to t

- any deterministic (randomized) geometric routing algorithm A has
- optimal path has constant cost c" $\} \underset{k \rightarrow \infty}{ } \frac{c(A)}{c^{*}}=\infty$ (covering a constant distance at almost no cost)

\rightarrow With energy metric there is no competitive geometric routing algorithm

GOAFR: Summary

3D Geo-Routing

- The world is not flat. We can certainly envision networks in 3D, e.g. in a large office building. Can we geo-route in three dimensions? Are the same techniques possible?
- Certainly, if the node density is high enough (and the node distribution is kind to us), we can simply use greedy routing. But what about those local minima?!?
- Is there something like a face in 3D?
- How would you do 3D routing?
- The picture on the right is the 3D equivalent of the 2D lower bound, proving that we need at least OPT ${ }^{3}$ steps.

Deterministic Routing in 3-Dimensional Networks

We will prove that
There is no deterministic k-local routing algorithm for 3D UDGs

- Deterministic: Whenever a node n receives a message from node m, n determines the next hop as a function $f(n, m, s, t, N(n))$, where s and t are the source and the target nodes and $N(n)$ the neighborhood of n.
- k-local: A node only knows its k-hop neighborhood
- Proof Outline:
(A) We show that an arbitrary graph G can be translated to a 3D UDG G'
(B) Assume for contradiction that there is a k-local algorithm A_{k} for 3D UDGs,
(C)We show that there must also be a 1-local algorithm A_{1} for 3D UDGs
(D)The translation from G to G^{\prime} is strictly local, therefore, we could simulate A_{1} on G and obtain a 1-local routing for arbitrary graphs
(E) We show that there is no such algorithm, disproving the existence of A_{k}.

Transforming a general graph to a 3D UDG (1/2)

- Main idea: Build the 3D UDG similar to an electronic circuit on three layers, and add chains of virtual nodes (the conductors)

Transforming a general graph to a 3D UDG (2/2)

- Virtual nodes on the middle layer establish the connections
- The resulting graph is a 3D UDG

1-local Routing for 3D UDGs

- Assume that there is a k-local routing algorithm $\boldsymbol{A}_{\boldsymbol{k}}$ for 3D UDG
- Adapt the transformation s.t. the connecting lines contain at least $2 k$ virtual nodes
- As a result, $\boldsymbol{A}_{\boldsymbol{k}}$ cannot see more than 1 hop of the original graph
- The stretching of the paths introduces 'dummy' information of no use, but the algorithm \mathbf{A}_{k} still has to work
- Therefore, there must also be a 1-local algorithm \boldsymbol{A}_{1} for 3D UDG

1-local Routing for Arbitrary Graphs

- The transformation to the 3D UDG G' can be determined strictly locally from any graph G
- The nodes of any graph G can simulate A_{1} by simulating G^{\prime}
- Therefore, \boldsymbol{A}_{1} can be used to build a 1-local routing algorithm for arbitrary graphs

How node 2 sees the virtual graph G'

1-local Routing for Arbitrary Graphs is impossible (1/2)

- A deterministic routing algorithm can be described as a function $f(n, m, s, t, N(n))$, which returns the next hop
- n : current node, m : previous node, s : source, t : target, $N(n)$: neighborhood of n
- Node n has no means to determine locally which of its neighbors has a connection to $t \rightarrow n$ must try all of them before returning to m
- Even the position of t or s can't help
- The function f must be a cycle over the $i+1$ neighbors
- If not, we miss some neighbors of n, which may connect to t
©

1-local Routing for Arbitrary Graphs is impossible (2/2)

- Node 2 and 7 have to decide on one forwarding function
- There are 4 combinations possible. For all of them, forwarding fails either in the left or the right network
- Conclusion 1: 1-local routing algorithms do not exist
- Conclusion 2: There is no k-local routing algorithm for 3D UDG
- Conclusion 3: There is no k-local routing algorithm for 3D graphs

x	$f_{2}(x)$			
1	3		x	$f_{2}(x)$
3	4	xor	1	4
4	1		3	3

x	$f_{7}(x)$			
5	8			
8	6		x	$f_{7}(x)$
6	5		5	6
			8	8

Routing with and without position information

- Without position information:
- Flooding
\rightarrow does not scale
- Distance Vector Routing
\rightarrow does not scale
- Source Routing
- increased per-packet overhead
- no theoretical results, only simulation
- With position information:
- Greedy Routing
\rightarrow may fail: message may get stuck in a "dead end"
- Geometric Routing
\rightarrow It is assumed that each node knows its position

Obtaining Position Information

- Attach GPS to each sensor node
- Often undesirable or impossible
- GPS receivers clumsy, expensive, and energy-inefficient
- Equip only a few designated nodes with a GPS
- Anchor (landmark) nodes have GPS
- Non-anchors derive their position through communication (e.g., count number of hops to different anchors)

Anchor density determines
quality of solution

What about no GPS at all?

- In absence of GPS-equipped anchors...
\rightarrow...nodes are clueless about real coordinates.
- For many applications, real coordinates are not necessary
\rightarrow Virtual coordinates are sufficient

90 44' 56" East 470 3('119)' North

90 44' 57" East 470 3(${ }^{\prime}, \frac{1}{19}$ " North

VS.
real coordinates

90 44'58" East 470 30¹9" North

90 44'55' East 470 30' 19 " North

virtual coordinates

What are "good" virtual coordinates?

- Given the connectivity information for each node and knowing the underlying graph is a UDG find virtual coordinates in the plane such that all connectivity requirements are fulfilled, i.e. find a realization (embedding) of a UDG:
- each edge has length at most 1
- between non-neighbored nodes the distance is more than 1
- Finding a realization of a UDG from connectivity information only is NP-hard...
- [Breu, Kirkpatrick, Comp.Geom.Theory 1998]
- ...and also hard to approximate
- [Kuhn, Moscibroda, Wattenhofer, DIALM 2004]

Geometric Routing without Geometry

- For many applications, like routing, finding a realization of a UDG is not mandatory
- Virtual coordinates merely as infrastructure for geometric routing
\rightarrow Pseudo geometric coordinates:
- Select some nodes as anchors: $a_{1}, a_{2}, \ldots, a_{k}$
- Coordinate of each node u is its hop-distance to all anchors:

$$
\left(d\left(u, a_{1}\right), d\left(u, a_{2}\right), \ldots, d\left(u, a_{k}\right)\right)
$$

- Requirements:
- each node uniquely identified: Naming Problem
- routing based on (pseudo geometric) coordinates possible: Routing Problem

Pseudo-geometric routing in the grid: Naming

Pseudo-geometric routing in the grid: Routing

Problem: UDG is usually not a grid

- Recursive construction of a unit dist tree (UDT) which needs $\Omega(\mathrm{n})$ anchors

Pseudo-geometric routing in the UDT: Naming

- Leaf-siblings can only be distinguished if one of them is an anchor:

Lemma: in a unit disk tree with n nodes there are up to $\Theta(n)$ leaf-siblings. That is, we need to $\Theta(n)$ anchors.

Pseudo-geometric routing in the ad hoc networks

- Naming and routing in grid quite good, in previous UDT example very bad
- Real-world ad hoc networks are very probable neither perfect grids nor naughty unit disk trees

Truth is somewhere in

Summary of Results

- If position information is available geo-routing is a feasible option.
- Face routing guarantees to deliver the message.
- By restricting the search area the efficiency is OPT².
- Because of a lower bound this is asymptotically optimal.
- Combining greedy and face gives efficient algorithm.
- 3D geo-routing is impossible.
- Even if there is no position information, some ideas might be helpful.
- Geo-routing is probably the only class of routing that is well understood.
- There are many adjacent areas: topology control, location services, routing in general, etc.

Open problem

- One of the most-understood topics. In that sense it is hard to come up with a decent open problem. Let's try something wishy-washy.
- For a 2D UDG the efficiency of geo-routing can be quadratic to an optimal algorithm (with routing tables). However, the worst-case example is quite special. Open problem: How much information does one need to store in the network to guarantee only constant overhead?
- Variant: Instead of UDG some more realistic model
- How can one maintain this information if the network is dynamic?

