
Ad Hoc and Sensor Networks  – Pascal von Rickenbach X/1

TinyOS & nesC
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Sensor Nodes

• System Constraints 
– Slow CPU
– Little memory
– Short-range radio
– Battery powered
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Operating System Requirements

• Measure real-world phenomena
– Event-driven architecture

• Resource constraints
– Hurry up and sleep!

• Adapt to changing technologies
– Modularity & re-use

• Applications spread over many small nodes
– Communication is fundamental

• Inaccessible location, critical operation
– Robustness
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TinyOS Platform

• TinyOS consists of a scheduler & graph of components
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Programming Model

• Separate construction and composition

• Programs are built out of components specified by an interface

• Two types of components
– Modules: Implement behavior
– Configurations: Wire components together

• Components use and provide interfaces

provides „hooks“ for
component wiring

Interfaces are 
bidirectional

Component A

Component B

Interface I
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Component A

Component B

Interface I

• Interfaces contain definitions of
– Commands
– Events

• Components implement the events they use and the commands 
they provide.

Programming Model

pr
ov

id
es

uses

must implement commands,
can signal events

can call commands,
must implement events
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Programming Model

• Components are wired together by connecting interface users with
interface providers.

• Commands flow downwards
– Control returns to caller

• Events flow upwards
– Control returns to signaler

• Commands are non-blocking
requests. 

Event

Component C

Component B

Component A
Command

Modular construction kit
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Concurrency Model

• Coarse-grained concurrency only
– Implemented via tasks

• Tasks run sequentially by TinyOS scheduler
– “Multi-threading” is done by the programmer
– Atomic with respect to other tasks (single threaded)
– Longer background processing jobs

• Events (interrupts)
– Time critical
– Preempt tasks
– Short duration (hand off computation to tasks if needed)

Note that “event” is overloaded

Actually single threaded!
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Memory Model

• Static memory allocation
– No heap (malloc)
– No function pointers

• Global variables
– One frame per component

• Local variables
– Declared within a method
– Saved on the stack

• Conserve memory
• Use pointers, don’t copy buffers

10 kBFree

Global

Stack
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Network Stack

• Ready-to-use communication framework
– Simple hardware abstraction
– Standardized message format
– Integrated dispatcher

GenericComm
AMStandard RadioCRCPacket

UARTFramedPacket

TimerC• start()
• stop()

• fired()

• send()

• sendDone()
• receive()

• send()
• sendDone()
• receive()

• send()
• activity()

• sendDone()
• receive()

This is just a configuration!

Dispatcher for different
messages types
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TinyOS Distribution

• TinyOS is distributed in source code
– nesC as programming language

• nesC
– Dialect of C
– Embodies the structuring concepts and execution model of TinyOS

– Module, configuration, interface
– Tasks, calls, signals

– Pre-processor producing C code

• nesC limitations
– No dynamic memory allocation
– No function pointers

http://www.tinyos.net/scoop/
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nesC – Hello World

configuration Blink {
}
implementation {

components Main,BlinkM,TimerC,LedsC;

Main.StdControl -> BlinkM.StdControl;
Main.StdControl -> TimerC;

BlinkM.Timer -> TimerC;
BlinkM.Leds -> LedsC;

}

module BlinkM {
provides {

interface StdControl;
}
uses {

interface Timer;
interface Leds;

}
}
implementation {

…
command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 1000);
}

task void processing() {
call Leds.redToggle();

}

event result_t Timer.fired() {
post processing();
return SUCCESS;

}
}

Wiring the components

All involved components

Timer fires every second

Schedule the actual 
computation 
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