
Ad Hoc and Sensor Networks – Pascal von Rickenbach X/1

TinyOS & nesC
Chapter X

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/2

Sensor Nodes

• System Constraints
– Slow CPU
– Little memory
– Short-range radio
– Battery powered

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/3

Operating System Requirements

• Measure real-world phenomena
– Event-driven architecture

• Resource constraints
– Hurry up and sleep!

• Adapt to changing technologies
– Modularity & re-use

• Applications spread over many small nodes
– Communication is fundamental

• Inaccessible location, critical operation
– Robustness

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/4

TinyOS Platform

• TinyOS consists of a scheduler & graph of components

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/5

Programming Model

• Separate construction and composition

• Programs are built out of components specified by an interface

• Two types of components
– Modules: Implement behavior
– Configurations: Wire components together

• Components use and provide interfaces

provides „hooks“ for
component wiring

Interfaces are
bidirectional

Component A

Component B

Interface I

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/6

Component A

Component B

Interface I

• Interfaces contain definitions of
– Commands
– Events

• Components implement the events they use and the commands
they provide.

Programming Model

pr
ov

id
es

uses

must implement commands,
can signal events

can call commands,
must implement events

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/7

Programming Model

• Components are wired together by connecting interface users with
interface providers.

• Commands flow downwards
– Control returns to caller

• Events flow upwards
– Control returns to signaler

• Commands are non-blocking
requests.

Event

Component C

Component B

Component A
Command

Modular construction kit

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/8

Concurrency Model

• Coarse-grained concurrency only
– Implemented via tasks

• Tasks run sequentially by TinyOS scheduler
– “Multi-threading” is done by the programmer
– Atomic with respect to other tasks (single threaded)
– Longer background processing jobs

• Events (interrupts)
– Time critical
– Preempt tasks
– Short duration (hand off computation to tasks if needed)

Note that “event” is overloaded

Actually single threaded!

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/9

Memory Model

• Static memory allocation
– No heap (malloc)
– No function pointers

• Global variables
– One frame per component

• Local variables
– Declared within a method
– Saved on the stack

• Conserve memory
• Use pointers, don’t copy buffers

10 kBFree

Global

Stack

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/10

Network Stack

• Ready-to-use communication framework
– Simple hardware abstraction
– Standardized message format
– Integrated dispatcher

GenericComm
AMStandard RadioCRCPacket

UARTFramedPacket

TimerC• start()
• stop()

• fired()

• send()

• sendDone()
• receive()

• send()
• sendDone()
• receive()

• send()
• activity()

• sendDone()
• receive()

This is just a configuration!

Dispatcher for different
messages types

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/11

TinyOS Distribution

• TinyOS is distributed in source code
– nesC as programming language

• nesC
– Dialect of C
– Embodies the structuring concepts and execution model of TinyOS

– Module, configuration, interface
– Tasks, calls, signals

– Pre-processor producing C code

• nesC limitations
– No dynamic memory allocation
– No function pointers

http://www.tinyos.net/scoop/

Ad Hoc and Sensor Networks – Pascal von Rickenbach X/12

nesC – Hello World

configuration Blink {
}
implementation {

components Main,BlinkM,TimerC,LedsC;

Main.StdControl -> BlinkM.StdControl;
Main.StdControl -> TimerC;

BlinkM.Timer -> TimerC;
BlinkM.Leds -> LedsC;

}

module BlinkM {
provides {

interface StdControl;
}
uses {

interface Timer;
interface Leds;

}
}
implementation {

…
command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 1000);
}

task void processing() {
call Leds.redToggle();

}

event result_t Timer.fired() {
post processing();
return SUCCESS;

}
}

Wiring the components

All involved components

Timer fires every second

Schedule the actual
computation

	TinyOS & nesC�Chapter X
	Sensor Nodes
	Operating System Requirements
	TinyOS Platform
	Programming Model
	Programming Model
	Programming Model
	Concurrency Model
	Memory Model
	Network Stack
	TinyOS Distribution
	nesC – Hello World

