Ad Hoc and Sensor Networks Exercise 4

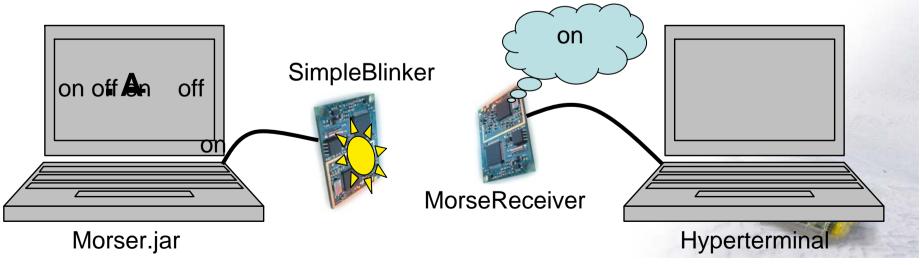
Sensor Network programming

Ad Hoc and Sensor Networks

- Sensor network programming in a nutshell
 - Read a tutorial
 - Solve two (simple) tasks on real hardware
 - Lab-style exercise
 - Teams of two to three students are ideal
 - Two parallel lab working places are available
 - Reservation system on the course website
 - Expected time needed for all tasks:
 3-4 hours
 - Mandatory to get the testat without taking the exam

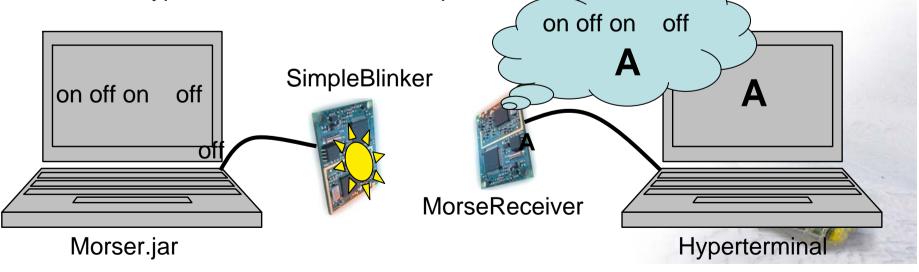
Tutorial

- Carefully read the tutorial on the TinyOS website
 - http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
 - Ignore instructions about setting up the system, flashing applications, simulation, and data ROM access
- The tutorial contains several exercise tasks: Think about them but do not write code
- We use an Eclipse plug-in to develop the applications which is not mentioned in the tutorial



- Exchange of a sensor reading
 - Two sensor nodes are u get from the
 - One node periodically same sensor? and broadcasts the reading over its radio
 - The other node listens for radio messages and signals if it is getting brighter or darker
 - Brighter -> The green LED of the receiver is set
 - Darker -> The red LED of the receiver is set
 - No significant change -> The yellow LED is set

Optical Communication using Morse Codes


- Sender
 - Sensor node connected to the pc over a serial connection
 - Controlled by a (provided) java application
 - LEDs are toggled on/off to transmit Morse signals
- Receiver
 - Sensor node sampling its light sensor. Detects and decodes Morse signals
 - Connected to a pc over a serial connection. On the pc the Hyperterminal is used for output

Ad Hoc and Sensor Networks

Optical Communication using Morse Codes

- Sender
 - Sensor node connected to the pc over a serial connection
 - Controlled by a (provided) java application
 - LEDs are toggled on/off to transmit Morse signals
- Receiver
 - Sensor node sampling its light sensor. Detects and decodes Morse signals
 - Connected to a pc over a serial connection. On the pc the Hyperterminal is used for output

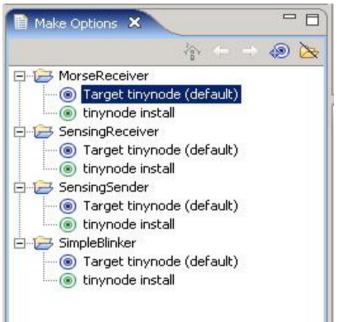
Optical Communication using Morse Codes

- Sender
 - Sensor node connected to the pc over a serial connection
 - Controlled by a (provided) java application
 - LEDs are toggled on/off to transmit Morse signals
- Receiver
 - Sensor node sampling its light sensor. Detects and decodes Morse signals
 - Connected to a pc over a serial connection. On the pc the Hyperterminal is used for output

Ad Hoc and Sensor Networks

- Code Skeletons for both applications are provided
 - Exercise 1 only needs very little additional programming and should be solved by all groups
 - Exercise 2 is more challenging but is also more fun

Hint: Exercise 1 may contain helpful code fragments


Setup

- The lab computers are preinstalled with all necessary tools and the exercise skeletons
- An Eclipse plug-in for TinyOS development is installed and configured. Check the following website for a quick start on how to use it: http://dcg.ethz.ch/projects/tos_ide/

Compiling

- For all Exercise applications two compile commands are defined.
 - Target tinynode is used to compile the application. The compiler output is directed to the Eclipse console
 - tinynode install
 is used to compile and
 flash the application to
 a sensor node

– A popup asks for a **bsl** number. This is the identifier of the serial port the sensor node is attached to. The identifier count starts at 0. Therefore COM1 == 0, COM2 == 1, COM3 == 2

Final Remarks

- The lab is in the ETL building. Hardware and keys must be fetched in our office ETZ G64.1
- If you get stuck come back to ETZ G64.1 and ask for help
- A FAQ page will be linked from the course website and updated regularly

