
1Johannes Schneider and Prof. Roger Wattenhofer

Multi-Core Computing
with Transactional Memory

Overview

 Introduction
 Difficulties with parallel (multi-core) programming
 A (partial) solution: Transactional Memory
 Contention Management

Johannes Schneider and Prof. Roger Wattenhofer 2

Multi-cores will be everywhere

 To increase computing speed, traditionally the
clock speed of a CPU was increased
 Problem: Overheating

 New approach: Have many cores on a single die
 Multi-core chips are used in every PC and soon

in every mobile phone
 It is likely that we see a doubling of cores every 2

years like we saw a doubling of clock speed
 BUT: Parallel programming brings new problems

and adds complexity for software engineers

Johannes Schneider and Prof. Roger Wattenhofer 3

Why is parallel programming more difficult?

 We need synchronization…
 Parallel reservation system for cinema tickets without

synchronization

Johannes Schneider and Prof. Roger Wattenhofer 4

Time Thread 1
- Return 5 tickets

n = Number of
sold tickets

Thread 2
- Buy 3 tickets

0 100
1 Read n (Return 100) 100

2 100 Read n (Return 100)
3 New value for n: 100-5 =95

Set n to 95
95

4 103 New value for n: 100+3=103
Set n to 103

Two kinds of parallelism

 Data parallelism
 different data for each thread (running on a core)
 every core works separately
 No overlapping, no problem!
 Ex.: Each thread sorts a given set of data unknown to other threads

 Task parallelism
 several tasks working on same/overlapping data
 Ex.: All threads insert/delete elements in the same tree

Johannes Schneider and Prof. Roger Wattenhofer 5

Concurrent programming today
 Synchronization using locks or monitors
 Locks implemented via test-and-set or compare and swap

operations
 Monitor : Mutual exclusion

 e.g. java “synchronized method”
 Easy but slow -> only 1 thread runs at a time

 Coarse grained vs. fine grained locking
easy but slow program difficult, cumbersome but fast programs
Little(no) parallelism lots of code, deadlocks…

Thread 1 Thread 2

Johannes Schneider and Prof. Roger Wattenhofer

lock all data
modify/use data
unlock all data

lock Element A
lock Element B
modify/use A,B
lock Element C
modify/use A,B,C
unlock A
modify/use B,C
unlock B,C

lock Element B
lock Element A
modify/use A,B

unlock A,B

Deadlock possible: Thread 1
locks A, while Thread 2 locks
B, then both are stuck…

Only 1 thread can operate on
the data

6

Example: Deleting an element from a linked list

 Sequential code/Coarse grained locking
 < 10 lines of code

 Concurrent linked list: See below…

Johannes Schneider and Prof. Roger Wattenhofer 7

More problems with locking - Composability

 How to compose objects/components using locks
 If locks are external then programmer must handle locking

himself
 cumbersome(lots of code), error-prone (deadlocks)

 If locks are internal then it is not possible to achieve all
desired behaviors
 Example: Hash table T1 (contains number 1) and T2 (empty)

No duplicates, each element unique
2 threads moving elements between tables

Johannes Schneider and Prof. Roger Wattenhofer

Algorithm Move(Element e, Table from, Table to)
if from.find(e) then

to.insert(e)
from.delete(e)

end if

8

Example continued…

 Threads might be delayed for some reasons: interrupts,
cache miss…

 Where is the ‘1’?
Johannes Schneider and Prof. Roger Wattenhofer 9

1

Transactional memory(TM) - a (partial) solution

 Simple for the programmer

 Composable

 Many TM systems (internally) still use locks
 But the TM system (not the programmer) cares about
 Performance
 Progress/correctness (no deadlocks...)

Johannes Schneider and Prof. Roger Wattenhofer

Begin transaction
modify/use data
End transaction

Algorithm Move(Element e, Table from, Table to)
Begin Transaction
if from.find(e) then

…
End Transaction

Method Table.find(Element e)
Begin transaction

…
End transaction

10

What is a transaction?

 Nothing new, has been used in databases for a long time
 Characterized by 3 properties (ACI)
 Atomicity

 Either a transaction finishes all its operations or no operation has an effect on the
system

 Consistency
 All objects are in a valid state before and after the transaction

 Isolation
 A transaction cannot access or see data in an intermediate (possibly invalid) state

of any parallel running transactions.

 For databases also durability
 If a transaction has completed, its changes are permanent

 Written on a disk not just in memory

Johannes Schneider and Prof. Roger Wattenhofer 11

Implementation of a TM system

 Systems exist in hardware, software and as a mix (hybrid)
 (Usually) transactions are executed optimistically
 i.e. without knowing whether they use the same data

 If transactions work on
 different data, everything is ok
 modify the same data, conflicts arise that must be resolved…

 Transactions might get delayed (has to wait) or aborted.

 A transaction keeps track of all modified values and
restores all values, if it is aborted due to a conflict.

 A transaction successfully finishes with a commit
 Only after the commit, other transactions notice its changes.

Johannes Schneider and Prof. Roger Wattenhofer 12

 A contention manager can abort or delay a transaction
 Important impact on performance
 Example
 Initially: A=1, B=1

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict

…
A:=2

abort (undo all changes, i.e. set A:=1)
and restart

T1Trans.1

…
A:=2

Trans. 2

B:=2
…
A:=3conflict

abort (set B:=1) and
restart, retry or wait

Conflicts – A contention manager decides

Johannes Schneider and Prof. Roger Wattenhofer 13

Just another example of a contention manager

Johannes Schneider and Prof. Roger Wattenhofer

T1Trans. 1 T1Trans. 2

…

A:=2
conflict

A:=2

Abort

A:=1
…

14

Why is TM only a partial solution? – Open issues

 I/O support
 Imagine a document is printed within a transaction and the

transaction gets aborted => waste of paper

 Interaction with old, non-transactional (legacy) code
 Efficiency
 TM still too slow, but catching up quickly…

 Despite the problems:
 TM system already on the market, partially supporting hardware TM
 many software TM libraries exist

Johannes Schneider and Prof. Roger Wattenhofer 15

Open issues from a research perspective

 Why research?
 Help understanding to improve efficiency
 create (provable) secure systems

 System model not sufficient
 PRAM: assumes threads are synchronous

only read/write access to memory
(e.g. no test and set)

no multilevel caching

 How to resolve conflicts?
 What is the ‘best’ contention manager?

Johannes Schneider and Prof. Roger Wattenhofer 16

Some theory on contention management

 Model: n transactions (and threads) starting concurrently
on n cores

 S (shared) resources (variables/objects)
 Transaction = sequence of operations
 Operation:
 takes 1 time unit
 2 kinds: Write, compute/abort/commit
 Write = modify (shared) resource and lock it until commit

 A conflict arises if transaction A wants to lock a resource
that is already locked by B

Johannes Schneider and Prof. Roger Wattenhofer 17

Model continued…

 A transaction demands unknown resources
 Dynamic data structures change over time
 Eg.:Binary tree, a transaction wants to insert 3

Initially: Must lock/modify right pointer of node 1

Assume transaction got aborted and another transaction
inserted 4 meanwhile.
Now: Must lock/modify left pointer of node 4

 Duration(number of operations) is fixed
 Not true, but mostly only a constant factor away

 Model is a simplification
 Ex.: There are also reads
 Ex.: a write access, does not always require a resource to be locked

Johannes Schneider and Prof. Roger Wattenhofer

1

1

4

3

3

18

-> only 1 thread at a time

Contention manager (CM)

 Distributed
 Each thread has its own manager

 Does not know future(potential) conflicts
 Conflicts also not learnable, might change
 Online scheduling problem

Manager 1 Manager 2 Manager 3

Johannes Schneider and Prof. Roger Wattenhofer

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict

…
A:=2

T1Trans.3

…
C:=2

Manager 2
resolves conflict

19

Properties of a contention manager

 Throughput
 Makespan = How long it takes until all n transactions committed =

length of a schedule
 Schedule of transactions defined by decisions of CM
 Look at worst case
 Competitive ratio = makespan my CM / makespan optimal CM

 Oblivious adversary = knows my CM (not random choices)
 Optimal CM knows decisions of adversary and all conflicts…

 Progress guarantees
 wait freedom (strongest guarantee)

 all threads(transactions) make progress in a finite number of steps
 lock freedom

 one thread makes progress in a finite number of steps
 obstruction freedom (weakest)

 a thread makes progress in a finite number of steps in absence of contention (no
conflicts, no shared data)

Johannes Schneider and Prof. Roger Wattenhofer 20

Example of a CM
 Strategy: Be aggressive
 If a transaction A wants a resource locked by B, then B is aborted

 Throughput?
 (Possibly) none

 Livelock: Transactions repeatedly abort each other
 Eg: 2 Transactions that write/lock the same resource

 Progress guarantees?
 Obstruction freedom

Johannes Schneider and Prof. Roger Wattenhofer

T1Trans. 1

T1Trans. 2

A:=2
…

Conflict, Trans. 1 aborts and restarts
A:=1
…

A:=1
…

Conflict, Trans. 2 aborts and restarts

A:=2
…

…

21

 How long does it take to compute a good schedule?
 = Is it NP-hard to approximate the optimal makespan by a constant factor?

 …as long as approximating an optimal vertex coloring
 Optimal = Minimum number of colors =
 NP-hard to compute a coloring with

 Reduction to coloring
 Graph -> Scheduling problem -> Schedule -> Coloring
 Nodes = transactions
 Edges = resources (conflicts)
 Transactions have same duration t (=1)
 Transactions of same color don’t conflict

if resource acquisition takes almost no time, otherwise more complex

 This holds even, if all transactions (potential) conflicts are known and
transactions don’t change

R14

R17

T7

Problem complexity, it is (NP) hard…

22Johannes Schneider and Prof. Roger Wattenhofer

T1

T2

T3

T4

Time [0,t] [t,2t] [2t,3t]
Trans.
Run&commit

T1,T2,T3 T4,T5,T6 T7,T8

It is hard, so what can be done? Another example…

 CM Strategy: Avoid wasting work
 Approximate the work done
 Each transaction gets a (unique) timestamp t on startup (and after an

abort)
 Conflict: The younger transaction, having performed less work, is

aborted

 Throughput? Progress guarantees?
 Oldest transaction will always commit
 Lock freedom

 At least one out of n cores successfully executes a transaction

Johannes Schneider and Prof. Roger Wattenhofer

T1Tr. 1, t = 0
T1Tr. 2, t = 2

A:=2
Conflict, Trans. 2 aborts and restarts

A:=1
…

Conflict, Trans. 2 aborts and restarts A:=2
…

A:=2

t=3

t=4 23

Competitive ratio of the time stamp manager

 S resources
 n transactions that start concurrently
 Assume each transaction Ti locks a resource directly after

its start for its whole duration tTi

 Observe: At most S transactions can run in parallel
 If S+1 run in parallel at least 2 must attempt to lock the same

resource

 Thus the optimal makespan is at least:
 Makespan CM timestamp is at most:
 all run sequentially in the worst case

 Competitive ratio = timestamp/ optimal

Johannes Schneider and Prof. Roger Wattenhofer 24

T1Aborted Trans.

R0:=1

Lower bound on competitive ratio
 Thm: Competitive ratio of any CM (deterministic and randomized) is

Ω(n) if number of resources S >= n
 Proof (only for deterministic CM)

 Any CM must abort ½ of all transactions ST, say SA
 Adversary knows the aborted trans. SA
 She/he lets all of them lock the same resource R0
 All aborted transaction (½ n) must run sequentially
 Optimal lets all transactions SA commit and aborts the other ½

Johannes Schneider and Prof. Roger Wattenhofer 25

T1Trans. 1

R1:=1
R2:=1

T1Trans. 2

R2:=1
R1:=1

T1Trans. 3

R3:=1
R4:=1

T1Trans. 4

R4:=1
R3:=1

…

T1Aborted Trans.

R0:=1

Analysis of algorithm timestamp revisited

 For the lower bound the adversary reduced the parallelism
dramatically
 This is unlikely to happen

 Assume the demanded resources don’t change over time
 i.e. the adversary cannot reduce parallelism at run-time

 Is the competitive ratio still Ω(n) (for S>=n)?
 Yes (proof next slide)
 All transactions start concurrently
 Adversary knows timestamps of all transactions

Proof

Johannes Schneider and Prof. Roger Wattenhofer
27

T1Tr. 1,t=0

R1:=1

R2:=1

T1Tr. 2,t=1

R2:=1

R3:=1

T1Tr. 3,t=2

R3:=1

R4:=1

T1Tr. 4, t=3

R4:=1

R3:=1

…

Duration tT = n

R2:=1

R3:=1

R3:=1

R4:=1

R4:=1

R3:=1

R3:=1

R4:=1

R3:=1

time

Proof continued...

 Transaction Ti (>1) aborts at time n-i+1, Trans. 1 commits
 After a restart Transaction Ti (>2) aborts after running for

time n-i+2, Trans. 2 commits
 After the next restart Transaction Ti (>3) aborts after

running for time n-i+3, Trans. 3 commits
 The time until transaction i=n commits is
 Optimal:
 Schedules all transaction Ti with even i then the rest
 O(n)

 Competitive ratio: Ω(n)

28Johannes Schneider and Prof. Roger Wattenhofer

How about a randomized approach?

 Choose a random priority r from [1,n] on startup
 Transaction A with larger or same random number wins

conflict against B
 B aborts and waits
 Restart with a new random number as soon as A either commits or

aborts

Johannes Schneider and Prof. Roger Wattenhofer

16 December David Hasenfratz

T1Tr. 1, r = 3 T1Tr. 2, r = 2

C:=1
…
A:=3

…
A:=2

T1Tr.3, r = 1

…
C:=2

Tr. 3 aborts and waits
Tr. 2 aborts and waits

…
C:=2

r =5
Tr. 3 restarts and chooses new random number

29

Analysis

 Assume:
 (needed) resources are not modified
 Longest transaction takes time t
 Any transaction conflicts with at most d other transactions

 After time 2 t any transaction can restart and draw a new
random number
 Execute for time t-1 and then aborts and wait for at most time t

 Probability highest rand. number: 1/d
 Prob. random number unique:
 Choose d e log n random numbers

and probability to commit is:

Johannes Schneider and Prof. Roger Wattenhofer 30

Analysis continued and evaluation

 Time to choose d e log n random numbers is O(t d log n)

 How good is the algorithm?
 For the analysis of algorithm timestamp d = 2, t = n

 Makespan of randomized CM: O(n log n) with ‘high’ probability
 Deterministic timestamp: O(n2)

 Complexity measure
 Originally: Dependent on number of resources
 Now: Dependent on number of conflicts a transaction faces
 Better?

31Johannes Schneider and Prof. Roger Wattenhofer

Theory and practice

 For most benchmarks our randomized approach and a
timestamp manager achieve comparable throughput

 In general, the quality of a CM varies very much across
different benchmarks
 A CM might be good for one benchmark but bad for another

 A strategy that is (often) good:
 After a conflict do some kind of exponential randomized backoff
 Reduces load on system, resolves livelocks

Johannes Schneider and Prof. Roger Wattenhofer 32

Exponential backoff

 Example: Polka manager
 Approximate work: priority = number of accessed resources
 In case of a conflict: If have higher priority abort the other, if have

lower priority, then perform an exponential backoff
 Say priority difference of the two transactions is r

 Algorithm:
For i = 0..r

If resource not locked then lock it
else wait random time span with mean 2i

After r unsuccessful trials abort transaction with higher priority

Johannes Schneider and Prof. Roger Wattenhofer 33

Semester/master theses

 Check the homepage
 www.dcg.ethz.ch/theses.html

 For TM: Currently, more practical theses
 Programming, but challenging programming…
 Focus improve speed

 Speeding up programs (on multi-core systems)
 Efficient Multicore Systems with Transactional Memory

34Johannes Schneider and Prof. Roger Wattenhofer

http://www.dcg.ethz.ch/theses.html�
http://dcg.ethz.ch/theses/not_assigned/SpeedingUpPrograms.pdf�

That’s it, have a nice vacation!

35Johannes Schneider and Prof. Roger Wattenhofer

	Slide Number 1
	Overview
	Multi-cores will be everywhere
	Why is parallel programming more difficult?
	Two kinds of parallelism
	Concurrent programming today
	Example: Deleting an element from a linked list
	More problems with locking - Composability
	Example continued…
	Transactional memory(TM) - a (partial) solution
	What is a transaction?
	Implementation of a TM system
	Conflicts – A contention manager decides
	Just another example of a contention manager
	Why is TM only a partial solution? – Open issues
	Open issues from a research perspective�
	Some theory on contention management
	Model continued…
	Contention manager (CM)
	Properties of a contention manager
	Example of a CM
	Problem complexity, it is (NP) hard…
	It is hard, so what can be done? Another example…
	Competitive ratio of the time stamp manager
	Lower bound on competitive ratio
	Analysis of algorithm timestamp revisited
	Proof
	Proof continued...
	How about a randomized approach?
	Analysis
	Analysis continued and evaluation
	Theory and practice
	Exponential backoff
	 Semester/master theses
	Slide Number 35

