
Chapter 7

Shared Objects

7.1 Introduction

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this, we need protocols that allow the nodes of a network to
store and manage access to such a shared object. A simple and obvious solution
is to store the shared object at a central location (see Algorithm 29).

Algorithm 29 Shared Object: Centralized Solution

Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).

Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:

• Algorithm 29 works. Instead of a spanning tree, one can use routing.

• It is however not very efficient. Assume that the object is accessed by
a single node v repeatedly. Then we get a high message/time complex-
ity. Instead v could store the object, or at least cache it. But then, in
case another node w accesses the object, we might run into consistency
problems.

• Alternative idea: The accessing node should become the new master of
the object. The shared object then becomes mobile. There exist several
variants of this idea. The simplest version is a home-based solution like
in Mobile IP (see Algorithm 30).

61

62 CHAPTER 7. SHARED OBJECTS

Algorithm 30 Shared Object: Home-Based Solution

Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.

Accessing Object: (by node v)
1: v acquires a lock at the home base, receives object.

Remarks:

• Home-based solutions suffer from the triangular routing problem. If two
close-by nodes access the object on a rotating basis, all the traffic is routed
through the potentially far away home-base.

7.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 31. For simplicity,
we assume that a node u only starts a find request if u is not currently the
holder of the shared object and if u has finished all previous find requests (i.e.,
it is not currently waiting to receive the object).

Remarks:

• The parent pointers in Algorithm 31 are only needed for the find operation.
Sending the variable to u in line 13 or to w.successor in line 23 is done
using routing (on the spanning tree or on the underlying network).

• When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node holding
the variable)

• What is really great about the Arrow algorithm is that it works in a
completely asynchronous and concurrent setting (i.e., there can be many
find requests at the same time).

Theorem 7.1. (Arrow, Analysis) In an asynchronous, steady-state, and con-
current setting, a “find” operation terminates with message and time complexity
D, where D is the diameter of the spanning tree.

7.2. ARROW AND FRIENDS 63

Algorithm 31 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 29, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:

1: do atomically

2: u sends “find by u” message to parent node
3: u.parent := u
4: u.wait := true

5: end do

Upon w Receiving “Find by u” Message from Node v:

6: do atomically

7: if w.parent �= w then

8: w sends “find by u” message to parent
9: w.parent := v

10: else

11: w.parent := v
12: if not w.wait then

13: send variable to u // w holds var. but does not need it any more
14: else

15: w.successor := u // w will send variable to u a.s.a.p.
16: end if

17: end if

18: end do

Upon w Receiving Shared Object:

19: perform operation on shared object
20: do atomically

21: w.wait := false

22: if w.successor �= null then

23: send variable to w.successor
24: w.successor := null

25: end if

26: end do

64 CHAPTER 7. SHARED OBJECTS

Before proving Theorem 7.1, we prove the following lemma.

Lemma 7.2. An edge {u, v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.l.o.g., assume that initially the edge {u, v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1.

Proof of Theorem 7.1. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u, v} for the second time and assume that e is the first edge that is
traversed twice by f . The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to u). This is a contradiction to Lemma 7.2.

Remarks:

• Finding a good tree is an interesting problem. We would like to have a
tree with low stretch, low diameter, low degree, etc.

• It seems that the Arrow algorithm works especially well when lots of “find”
operations are initiated concurrently. Most of them will find a “close-by”
node, thus having low message/time complexity. For the sake of simplicity
we analyze a synchronous system.

Theorem 7.3. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complexity of all “find” operations is O(log |S|·
m∗) where m∗ is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u1 at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u1. A
node u2 that finds (is queued behind) u1 cannot distinguish the system from
a system where there was no request u1, and instead the root was initially
located at u1. The message cost of u2 is consequentially the distance between
u1 and u2 on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst

7.2. ARROW AND FRIENDS 65

case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof.

Remarks:

• An average request set S on a not-to-bad tree gives usually a much better
bound. However, there is an almost tight log |S|/ log log |S| worst-case
example.

• It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In particular
the message complexity of the dynamic analysis can be shown to have a
logD overhead only, where D is the diameter of the spanning tree (note
that for logarithmic trees, the overhead becomes log log n).

• What if the spanning tree is a star? Then with Theorem 7.1, each find will
terminate in 2 steps! Since also an optimal algorithm has message cost 1,
the algorithm is 2-competitive. . . ? Yes, but because of its high degree the
star center experiences contention. . . It can be shown that the contention
overhead is at most proportional to the largest degree ∆ of the spanning
tree.

• Thought experiment: Assume a balanced binary spanning tree—by Theo-
rem 7.1, the message complexity per operation is log n. Because a binary
tree has maximum degree 3, the time per operation therefore is at most
3 log n.

• There are better and worse choices for the spanning tree. The stretch of
an edge {u, v} is defined as distance between u and v in a spanning tree.
The maximum stretch of a spanning tree is the maximum stretch over all
edges. A few years ago, it was shown how to construct spanning trees that
are O(log n)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 32).

Theorem 7.4. Algorithm 32 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
w0, r1, r2, . . . , rk, w1. After w0, the object is stored at w0 and not cached
anywhere else. All reads cost twice the smallest subtree T spanning the write
w0 and all the reads since each read only goes to the first copy. The write w1

costs T plus the path P from w1 to T . Since any data management scheme
must use an edge in T and P at least once, and our algorithm uses edges in T
at most 3 times (and in P at most once), the theorem follows.

66 CHAPTER 7. SHARED OBJECTS

Algorithm 32 Shared Object: Read/Write Caching

• Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).

• Nodes store three items: a parent pointer pointing to one of the neighbors
(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.

• Initially the object is stored at a single node u; all the parent pointers point
towards u, all the cache bits are false.

• When initiating a read, a message follows the arrows (this time: without
inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.

• A write at u writes the new value locally (at node u), then searches (follow the
parent pointers and reverse them towards u) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

• Concurrent reads are not a problem, also multiple concurrent reads and
one write work just fine.

• What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

• Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows the
whole access sequence in advance. It can then cache the object before the
request even appears!

• Algorithms on trees are often simpler, but have the disadvantage that they
introduce the extra stretch factor. In a ring, for example, any tree has
stretch n− 1; so there is always a bad request pattern.

7.3. IVY AND FRIENDS 67

Algorithm 33 Shared Object: Pointer Forwarding

Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).

Accessing Object: (by node u)
1: follow parent pointers to current root r of T
2: send object from r to u
3: r.parent := u; u.parent := u; // u is the new root

Algorithm 34 Shared Object: Ivy

Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.

Start Find Request at Node u:

1: u sends “find by u” message to parent node
2: u.parent := u

Upon v receiving “Find by u” Message:

3: if v.parent = v then

4: send object to u
5: else

6: send “find by u” message to v.parent
7: end if

8: v.parent := u // u will become the new root

7.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 33.

Remarks:

• If the graph is not complete, routing can be used to find the root.

• Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linearly linked list. Pointer
forwarding is therefore bad in a worst-case.

• If edges are not FIFO, it can even happen that the number of steps is
unbounded for a node having bad luck. An algorithm with such a property
is named “not fair,” or “not wait-free.” (Example: Initially we have the
list 4 → 3 → 2 → 1; 4 starts a find; when the message of 4 passes 3, 3
itself starts a find. The message of 3 may arrive at 2 and then 1 earlier,
thus the new end of the list is 2 → 1 → 3; once the message of 4 passes 2,
the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited

68 CHAPTER 7. SHARED OBJECTS

x3x1 x2 x4 x5x1

x2

x3

x4

x5

x0

x0

Figure 7.1: Reversal of the path x0, x1, x2, x3, x4, x5.

during a find message to the new root. The details are given by Algorithm 34.
Figure 7.1 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node x0 on the left tree).

Remarks:

• Also with Algorithm 34, we might have a bad linked list situation. How-
ever, if the start of the list acquires the object, the linked list turns into
a star. As the following theorem will show, the search paths are not long
on average. Since paths sometimes can be bad, we will need amortized
analysis.

Theorem 7.5. If the initial tree is a star, a find request of Algorithm 34 needs
log n steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential Φ of the whole tree
T as (V is the set of all nodes)

Φ(T) =
�

u∈V

log s(u)

2
.

Assume that the path traversed by the ith operation has length ki, i.e., the ith

operation redirects ki pointers to the new root. Clearly, the number of steps
of the ith operation is proportional to ki. We are interested in the cost of m
consecutive operations,

�m

i=1
ki.

Let T0 be the initial tree and let Ti be the tree after the ith operation.
Further, let ai = ki−Φ(Ti−1)+Φ(Ti) be the amortized cost of the ith operation.
We have

m�

i=1

ai =

m�

i=1

�
ki − Φ(Ti−1) + Φ(Ti)

�
=

m�

i=1

ki − Φ(T0) + Φ(Tm).

For any tree T , we have Φ(T) ≥ log(n)/2. Because we assume that T0 is a star,
we also have Φ(T0) = log(n)/2. We therefore get that

m�

i=1

ai ≥
m�

i=1

ki.

7.3. IVY AND FRIENDS 69

Hence, it suffices to upper bound the amortized cost ai of every operation. We
thus analyze the amortized cost ai of the ith operation. Let x0, x1, x2, . . . , xki

be the path that is reversed by the operation. Further for 0 ≤ j ≤ ki, let sj be
the size of the subtree rooted at xj before the reversal. The size of the subtree
rooted at x0 after the reversal is ski

and the size of the one rooted at xj after
the reversal, for 1 ≤ j ≤ ki, is sj − sj−1 (see Figure 7.1). We can thus write ai

as

ai = ki −

ki�

j=0

1

2
log sj

 +

1

2
log ski

+

ki�

j=1

1

2
log(sj − sj−1)

= ki +
1

2
·

ki−1�

j=0

�
log(sj+1 − sj)− log sj

�

= ki +
1

2
·

ki−1�

j=0

log

�
sj+1 − sj

sj

�

.

For 0 ≤ j ≤ ki−1, let αj = sj+1/sj . Note that sj+1 > sj and thus that αj > 1.
Further note, that (sj+1 − sj)/sj = αj − 1. We therefore have that

ai = ki +
1

2
·

ki−1�

j=0

log(αj − 1)

=

ki−1�

j=0

�

1 +
1

2
log(αj − 1)

�

.

For α > 1, it can be shown that 1+log(α−1)/2 ≤ logα (see Lemma 7.6). From
this inequality, we obtain

ai ≤

ki−1�

j=0

logαj =

ki−1�

j=0

log
sj+1

sj

=

ki−1�

j=0

(log sj+1 − log sj)

= log ski
− log s0 ≤ log n,

because ski
= n and s0 ≥ 1. This concludes the proof.

Lemma 7.6. For α > 1, 1 + log(α− 1)/2 ≤ logα.

Proof. The claim can be verified by the following chain of reasoning:

0 ≤ (α− 2)2

0 ≤ α2 − 4α + 4

4(α− 1) ≤ α2

log2

�
4(α− 1)

�
≤ log2

�
α2

�

2 + log2(α− 1) ≤ 2 log2 α

1 +
1

2
log2(α− 1) ≤ log2 α.

70 CHAPTER 7. SHARED OBJECTS

Remarks:

• Systems guys (the algorithm is called Ivy because it was used in a system
with the same name) have some fancy heuristics to improve performance
even more: For example, the root every now and then broadcasts its name
such that paths will be shortened.

• What about concurrent requests? It works with the same argument as
in Arrow. Also for Ivy an argument including congestion is missing (and
more pressing, since the dynamic topology of a tree cannot be chosen to
have low degree and thus low congestion as in Arrow).

• Sometimes the type of accesses allows that several accesses can be com-
bined into one to reduce congestion higher up the tree. Let the tree in
Algorithm 29 be a balanced binary tree. If the access to a shared variable
for example is “add value x to the shared variable,” two or more accesses
that accidentally meet at a node can be combined into one. Clearly ac-
cidental meeting is rare in an asynchronous model. We might be able to
use synchronizers (or maybe some other timing tricks) to help meeting a
little bit.

