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Introduction

What is Distributed Computing?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
Typical “old school” examples are parallel computers or the Internet. More re-
cent application examples of distributed systems include peer-to-peer systems,
sensor networks, or multi-core architectures.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they may have their own hardware, their own code, and
sometimes their own independent task. Nevertheless, the nodes may share com-
mon resources and information and, in order to solve a problem that concerns
several—or maybe even all—nodes, coordination is necessary.

Despite these commonalities, a peer-to-peer system, for example, is quite
different from a multi-core architecture. Due to such differences, many differ-
ent models and parameters are studied in the area of distributed computing.
In some systems, the nodes operate synchronously, and in other systems they
operate asynchronously. There are simple homogeneous systems, and hetero-
geneous systems where different types of nodes, potentially with different ca-
pabilities, objectives etc., need to interact. There are different communication
techniques: nodes may communicate by exchanging messages, or by means of
shared memory. Sometimes the communication infrastructure is tailor-made for
an application, sometimes one has to work with any given infrastructure. The
nodes in a system sometimes work together to solve a global task, occasionally
the nodes are autonomous agents that have their own agenda and compete for
common resources. Sometimes the nodes can be assumed to work correctly, at
times they may exhibit failures. In contrast to a single-node system, distributed
systems may still function correctly despite failures as other nodes can take over
the work of the failed nodes. There are different kinds of failures that can be
considered: nodes may just crash, or they might exhibit an arbitrary, erroneous
behavior, maybe even to a degree where it cannot be distinguished from mali-
cious (also known as Byzantine) behavior. It is also possible that the nodes do
follow the rules, however they tweak the parameters to get the most out of the
system; in other words, the nodes act selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in greater detail now, but simply
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define them when we use them. Towards the end of the course a general picture
should emerge. Hopefully!

This course introduces the basic principles of distributed computing, high-
lighting common themes and techniques. In particular, we study some of the
fundamental issues underlying the design of distributed systems:

• Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

• Coordination: How can you coordinate a distributed system so that it
performs some task efficiently?

• Fault-tolerance: As mentioned above, one major advantage of a distrib-
uted system is that even in the presence of failures the system as a whole
may survive.

• Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
In this course, we will address the fundamental question in distributed
computing whether a local solution is possible for a wide range of problems.

• Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

• Symmetry breaking: Sometimes some nodes need to be selected to or-
chestrate the computation (and the communication). This is typically
achieved by a technique called symmetry breaking.

• Synchronization: How can you implement a synchronous algorithm in an
asynchronous system?

• Uncertainty: If we need to agree on a single term that fittingly describes
this course, it is probably “uncertainty”. As the whole system is distrib-
uted, the nodes cannot know what other nodes are doing at this exact
moment, and the nodes are required to solve the tasks at hand despite the
lack of global knowledge.

Finally, there are also a few areas that we will not cover in this course,
mostly because these topics have become so important that they deserve and
have their own courses. Examples for such topics are distributed programming,
software engineering, and also security and cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!



Chapter 1

Vertex Coloring

1.1 Introduction

Vertex coloring is an infamous graph theory problem. It is also a useful toy
example to see the style of this course already in the first lecture. Vertex coloring
does have quite a few practical applications, for example in the area of wireless
networks where coloring is the foundation of so-called TDMA MAC protocols.
Generally speaking, vertex coloring is used as a means to break symmetries, one
of the main themes in distributed computing. In this chapter we will not really
talk about vertex coloring applications but treat the problem abstractly. At the
end of the class you probably learned the fastest (but not constant!) algorithm
ever! Let us start with some simple definitions and observations.

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V,E), assign
a color cu to each vertex u ∈ V such that the following holds: e = (v, w) ∈
E ⇒ cv 6= cw.

Remarks:

• Throughout this course, we use the terms vertex and node interchangeably.

• The application often asks us to use few colors! In a TDMA MAC protocol,
for example, less colors immediately imply higher throughput. However,
in distributed computing we are often happy with a solution which is sub-
optimal. There is a tradeoff between the optimality of a solution (efficacy),
and the work/time needed to compute the solution (efficiency).
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Figure 1.1: 3-colorable graph with a valid coloring.
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6 CHAPTER 1. VERTEX COLORING

Assumption 1.2 (Node Identifiers). Each node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only log n bits
if the system has n nodes.

Remarks:

• Sometimes we might even assume that the nodes exactly have identifiers
1, . . . , n.

• It is easy to see that node identifiers (as defined in Assumption 1.2) solve
the coloring problem 1.1, but not very well (essentially requiring n colors).
How many colors are needed at least is a well-studied problem.

Definition 1.3 (Chromatic Number). Given an undirected Graph G = (V,E),
the chromatic number χ(G) is the minimum number of colors to solve Problem
1.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1 Greedy Sequential

1: while ∃ uncolored vertex v do
2: color v with the minimal color (number) that does not conflict with the

already colored neighbors
3: end while

Definition 1.4 (Degree). The number of neighbors of a vertex v, denoted by
δ(v), is called the degree of v. The maximum degree vertex in a graph G defines
the graph degree ∆(G) = ∆.

Theorem 1.5 (Analysis of Algorithm 1). The algorithm is correct and termi-
nates in n “steps”. The algorithm uses ∆ + 1 colors.

Proof: Correctness and termination are straightforward. Since each node has at
most ∆ neighbors, there is always at least one color free in the range {1, . . . ,∆+
1}.
Remarks:

• In Definition 1.7 we will see what is meant by “step”.

• For many graphs coloring can be done with much less than ∆ + 1 colors.

• This algorithm is not distributed at all; only one processor is active at a
time. Still, maybe we can use the simple idea of Algorithm 1 to define a
distributed coloring subroutine that may come in handy later.

Now we are ready to study distributed algorithms for this problem. The fol-
lowing procedure can be executed by every vertex v in a distributed coloring
algorithm. The goal of this subroutine is to improve a given initial coloring.
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Procedure 2 First Free
Require: Node Coloring {e.g., node IDs as defined in Assumption 1.2}

Give v the smallest admissible color {i.e., the smallest node color not used by
any neighbor}

Remarks:

• With this subroutine we have to make sure that two adjacent vertices are
not colored at the same time. Otherwise, the neighbors may at the same
time conclude that some small color c is still available in their neighbor-
hood, and then at the same time decide to choose this color c.

Definition 1.6 (Synchronous Distributed Algorithm). In a synchronous al-
gorithm, nodes operate in synchronous rounds. In each round, each processor
executes the following steps:

1. Do some local computation (of reasonable complexity).

2. Send messages to neighbors in graph (of reasonable size).

3. Receive messages (that were sent by neighbors in step 2 of the same round).

Remarks:

• Any other step ordering is fine.

Algorithm 3 Reduce

1: Assume that initially all nodes have ID’s (Assumption 1.2)
2: Each node v executes the following code
3: node v sends its ID to all neighbors
4: node v receives IDs of neighbors
5: while node v has an uncolored neighbor with higher ID do
6: node v sends “undecided” to all neighbors
7: end while
8: node v chooses a free color using subroutine First Free (Procedure 2)
9: node v informs all its neighbors about its choice
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Figure 1.2: Vertex 100 receives the lowest possible color.

Definition 1.7 (Time Complexity). For synchronous algorithms (as defined in
1.6) the time complexity is the number of rounds until the algorithm terminates.
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Remarks:

• The algorithm terminates when the last processor has decided to termi-
nate.

• To guarantee correctness the procedure requires a legal input (i.e., pairwise
different node IDs).

Theorem 1.8 (Analysis of Algorithm 3). Algorithm 3 is correct and has time
complexity n. The algorithm uses ∆ + 1 colors.

Remarks:

• Quite trivial, but also quite slow.

• However, it seems difficult to come up with a fast algorithm.

• Maybe it’s better to first study a simple special case, a tree, and then go
from there.

1.2 Coloring Trees

Lemma 1.9. χ(Tree) ≤ 2

Constructive Proof: If the distance of a node to the root is odd (even), color
it 1 (0). An odd node has only even neighbors and vice versa. If we assume
that each node knows its parent (root has no parent) and children in a tree, this
constructive proof gives a very simple algorithm:

Algorithm 4 Slow Tree Coloring

1: Color the root 0, root sends 0 to its children
2: Each node v concurrently executes the following code:
3: if node v receives a message x (from parent) then
4: node v chooses color cv = 1 − x
5: node v sends cv to its children (all neighbors except parent)
6: end if

Remarks:

• With the proof of Lemma 1.9, Algorithm 4 is correct.

• How can we determine a root in a tree if it is not already given? We will
figure that out later.

• The time complexity of the algorithm is the height of the tree.

• When the root was chosen unfortunately, and the tree has a degenerated
topology, the time complexity may be up to n, the number of nodes.

• Also, this algorithm does not need to be synchronous . . . !

Definition 1.10 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message . . . , do . . . ”). Pro-
cessors cannot access a global clock. A message sent from one processor to
another will arrive in finite but unbounded time.
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Remarks:

• The asynchronous model and the synchronous model (Definition 1.6) are
the cornerstone models in distributed computing. As they do not neces-
sarily reflect reality there are several models in between synchronous and
asynchronous. However, from a theoretical point of view the synchronous
and the asynchronous model are the most interesting ones (because every
other model is in between these extremes).

• Note that in the asynchronous model messages that take a longer path
may arrive earlier.

Definition 1.11 (Time Complexity). For asynchronous algorithms (as defined
in 1.6) the time complexity is the number of time units from the start of the
execution to its completion in the worst case (every legal input, every execution
scenario), assuming that each message hass a delay of at most one time unit.

Remarks:

• You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay upper
bound.

Definition 1.12 (Message Complexity). The message complexity of a syn-
chronous or asynchronous algorithm is determined by the number of messages
exchanged (again every legal input, every execution scenario).

Theorem 1.13 (Analysis of Algorithm 4). Algorithm 4 is correct. If each node
knows its parent and its children, the (asynchronous) time complexity is the tree
height which is bounded by the diameter of the tree; the message complexity is
n − 1 in a tree with n nodes.

Remarks:

• In this case the asynchronous time complexity is the same as the syn-
chronous time complexity.

• Nice trees, e.g. balanced binary trees, have logarithmic height, that is we
have a logarithmic time complexity.

• This algorithm is not very exciting. Can we do better than logarithmic?!?

The following algorithm terminates in log∗ n time. Log-Star?! That’s the num-
ber of logarithms (to the base 2) you need to take to get down to at least 2,
starting with n:

Definition 1.14 (Log-Star).
∀x ≤ 2 : log∗ x := 1 ∀x > 2 : log∗ x := 1 + log∗(log x)
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Remarks:

• Log-star is an amazingly slowly growing function. Log-star of all the atoms
in the observable universe (estimated to be 1080) is 5! There are functions
which grow even more slowly, such as the inverse Ackermann function,
however, the inverse Ackermann function of all the atoms is 4. So log-star
increases indeed very slowly!

Here is the idea of the algorithm: We start with color labels that have log n bits.
In each synchronous round we compute a new label with exponentially smaller
size than the previous label, still guaranteeing to have a valid vertex coloring!
But how are we going to do that?

Algorithm 5 “6-Color”

1: Assume that initially the vertices are legally colored. Using Assumption 1.2
each label only has log n bits

2: The root assigns itself the label 0.
3: Each other node v executes the following code (synchronously in parallel)
4: send cv to all children
5: repeat
6: receive cp from parent
7: interpret cv and cp as little-endian bit-strings: c(k), . . . , c(1), c(0)
8: let i be the smallest index where cv and cp differ
9: the new label is i (as bitstring) followed by the bit cv(i) itself

10: send cv to all children
11: until cw ∈ {0, . . . , 5} for all nodes w

Example:

Algorithm 5 executed on the following part of a tree:

Grand-parent 0010110000 → 10010 → . . .
Parent 1010010000 → 01010 → 111
Child 0110010000 → 10001 → 001

Theorem 1.15 (Analysis of Algorithm 5). Algorithm 5 terminates in log∗ n
time.

Proof: A detailed proof is, e.g., in [Peleg 7.3]. In class we do a sketchy proof.

Remarks:

• Colors 11∗ (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a total
of 6 colors (i.e., colors 0,. . . , 5).

• Can one reduce the number of colors in only constant steps? Note that
algorithm 3 does not work (since the degree of a node can be much higher
than 6)! For fewer colors we need to have siblings monochromatic!

• Before we explore this problem we should probably have a second look at
the end game of the algorithm, the UNTIL statement. Is this algorithm
truly local?! Let’s discuss!
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Algorithm 6 Shift Down

1: Root chooses a new (different) color from {0, 1, 2}
2: Each other node v concurrently executes the following code:
3: Recolor v with the color of parent

Lemma 1.16 (Analysis of Algorithm 6). Algorithm 6 preserves coloring legality;
also siblings are monochromatic.

Now Algorithm 3 (Reduce) can be used to reduce the number of used colors
from six to three.

Algorithm 7 Six-2-Three

1: Each node v concurrently executes the following code:
2: Run Algorithm 5 for log∗ n rounds.
3: for x = 5, 4, 3 do
4: Perform subroutine Shift down (Algorithm 6)
5: if cv = x then
6: choose new color cv ∈ {0, 1, 2} using subroutine First Free (Algorithm

2)
7: end if
8: end for

Theorem 1.17 (Analysis of Algorithm 7). Algorithm 7 colors a tree with three
colors in time O(log∗ n).

Remarks:

• The term O() used in Theorem 1.15 is called “big O” and is often used
in distributed computing. Roughly speaking, O(f) means “in the order of
f , ignoring constant factors and smaller additive terms.” More formally,
for two functions f and g, it holds that f ∈ O(g) if there are constants x0

and c so that |f(x)| ≤ c|g(x)| for all x ≥ x0. For an elaborate discussion
on the big O notation we refer to other introductory math or computer
science classes.

• As one can easily prove, a fast tree-coloring with only 2 colors is more
than exponentially more expensive than coloring with 3 colors. In a tree
degenerated to a list, nodes far away need to figure out whether they are
an even or odd number of hops away from each other in order to get a
2-coloring. To do that one has to send a message to these nodes. This
costs time linear in the number of nodes.

• Also other lower bounds have been proved, e.g., any algorithm for 2-
coloring the d-regular tree of radius r which runs in time at most 2r/3
requires at least Ω(

√
d) colors.

• The idea of this algorithm can be generalized, e.g., to a ring topology. Also
a general graph with constant degree ∆ can be colored with ∆ + 1 colors
in O(log∗ n) time. The idea is as follows: In each step, a node compares
its label to each of its neighbors, constructing a logarithmic difference-tag
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Figure 1.3: Possible execution of Algorithm 7.

as in 6-color (Algorithm 5). Then the new label is the concatenation of
all the difference-tags. For constant degree ∆, this gives a 3∆-label in
O(log∗ n) steps. Algorithm 3 then reduces the number of colors to ∆ + 1
in 23∆ (this is still a constant for constant ∆!) steps.

• Recently, researchers have proposed other methods to break down long
ID’s for log-star algorithms. With these new techniques, one is able to
solve other problems, e.g., a maximal independent set in bounded growth
graphs in O(log∗ n) time. These techniques go beyond the scope of this
course.

• Unfortunately, coloring a general graph is not yet possible with this tech-
nique. We will see another technique for that in Chapter 4. With this
technique it is possible to color a general graph with ∆ + 1 colors in
O(log n) time.

• A lower bound by Linial shows that many of these log-star algorithms are
asymptotically (up to constant factors) optimal. This lower bound uses an
interesting technique. However, because of the one-topic-per-class policy
we cannot look at it today.



Chapter 2

Leader Election

2.1 Anonymous Leader Election

Some algorithms (e.g. the slow tree coloring algorithm 4) ask for a special node,
a so-called “leader”. Computing a leader is a most simple form of symmetry
breaking. Algorithms based on leaders do generally not exhibit a high degree
of parallelism, and therefore often suffer from poor time complexity. However,
sometimes it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. The ring is the “dro-
sophila” of distributed computing as many interesting challenges already reveal
the root of the problem in the special case of the ring. Paying special attention
to the ring also makes sense from a practical point of view as some real world
systems are based on a ring topology, e.g., the token ring standard for local area
networks.

Problem 2.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

• More formally, nodes are in one of three states: undecided, leader, not
leader. Initially every node is in the undecided state. When leaving the
undecided state, a node goes into a final state (leader or not leader).

Definition 2.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 2.3 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

If a leader can be elected in an anonymous system depends on whether the
network is symmetric (ring, complete graph, complete bipartite graph, etc.) or
asymmetric (star, single node with highest degree, etc.). Simplifying slightly, in

13



14 CHAPTER 2. LEADER ELECTION

this context a symmetric graph is a graph in which the extended neighborhood
of each node has the same structure. We will now show that non-uniform
anonymous leader election for synchronous rings is impossible. The idea is that
in a ring, symmetry can always be maintained.

Lemma 2.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sk.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.6). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 2.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 2.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 2.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

• Sense of direction is the ability of nodes to distinguish neighbor nodes in
an anonymous setting. In a ring, for example, a node can distinguish the
clockwise and the counterclockwise neighbor. Sense of direction does not
help in anonymous leader election.

• Theorem 2.5 also holds for other symmetric network topologies (e.g., com-
plete graphs, complete bipartite graphs, . . . ).

• Note that Theorem 2.5 does not hold for randomized algorithms; if nodes
are allowed to toss a coin, symmetries can be broken.

2.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 1.10. Through-
out this section we assume non-anonymity; each node has a unique identifier
as proposed in Assumption 1.2. Having ID’s seems to lead to a trivial leader
election algorithm, as we can simply elect the node with, e.g., the highest ID.

Theorem 2.6 (Analysis of Algorithm 8). Algorithm 8 is correct. The time
complexity is O(n). The message complexity is O(n2).

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n2.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 1.11) we assume that
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Algorithm 8 Clockwise

1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its clockwise

neighbor. {If node v already received a message w with w > v, then node
v can skip this step; if node v receives its first message w with w < v, then
node v will immediately send v.}

3: if v receives a message w with w > v then
4: v forwards w to its clockwise neighbor
5: v decides not to be the leader, if it has not done so already.
6: else if v receives its own identifier v then
7: v decides to be the leader
8: end if

each message takes at most one time unit to arrive at its destination. After at
most n − 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n − 1. Every other node decides before
node z.

Remarks:

• Note that in Algorithm 8 nodes need to distinguish between clockwise
and counterclockwise neighbors. In fact they do not: It is okay to simply
send your own identifier to any neighbor, and forward a message m to the
neighbor you did not receive the message m from. So nodes only need to
be able to distinguish their two neighbors.

• Can we improve this algorithm?

Theorem 2.7 (Analysis of Algorithm 9). Algorithm 9 is correct. The time
complexity is O(n). The message complexity is O(n log n).

Proof: Correctness is as in Theorem 2.6. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2, 4, 8, 16, . . . , 2 · 2k with k ≤ log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2r (or less) survives round r. That is, node v is the only node in its
2r-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2r nodes are active in round r+1. Being active in round
r costs 2 · 2 · 2r messages. Therefore, round r costs at most 2 · 2 · 2r · n

2r−1 = 8n
messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:

• This algorithm is asynchronous and uniform as well.

• The question may arise whether one can design an algorithm with an even
lower message complexity. We answer this question in the next section.
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Algorithm 9 Radius Growth (For readability we provide pseudo-code only; for
a formal version please consult [Attiya/Welch Alg. 3.1])

1: Each node v does the following:
2: Initially all nodes are active. {all nodes may still become leaders}
3: Whenever a node v sees a message w with w > v, then v decides to not be

a leader and becomes passive.
4: Active nodes search in an exponentially growing neighborhood (clockwise

and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL
and forward the message to the next neighbor; if the TTL is zero, probe
messages are returned to sender using a reply message. The reply message
contains the ID of the receiver (the original sender of the probe message)
and the leader-bit. Reply messages are forwarded by all nodes until they
reach the receiver.

6: Upon receiving the reply message: If there was no active node with higher
ID in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7: If a node v receives its own probe message (not a reply) v decides to be the
leader.

2.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first lower
bound. We show that Algorithm 9 is asymptotically optimal.

Definition 2.8 (Execution). An execution of a distributed algorithm is a list of
events, sorted by time. An event is a record (time, node, type, message), where
type is “send” or “receive”.

Remarks:

• We assume throughout this course that no two events happen at exactly
the same time (or one can break ties arbitrarily).

• An execution of an asynchronous algorithm is generally not only deter-
mined by the algorithm but also by a “god-like” scheduler. If more than
one message is in transit, the scheduler can choose which one arrives first.

• If two messages are transmitted over the same directed edge, then it is
sometimes required that the message first transmitted will also be received
first (“FIFO”).

For our lower bound, we assume the following model:
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• We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

• We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

• During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 2.9 (Open Schedule). A schedule is an execution chosen by the
scheduler. A schedule for a ring is open if there is an open edge in the ring.
An open (undirected) edge is an edge where no message traversing the edge has
been received so far.

The proof of the lower bound is by induction. First we show the base case:

Lemma 2.10. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge is.

Proof: Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges.

Lemma 2.11. By gluing two rings with open schedules of size n/2 together,
we can construct an open schedule on a ring of size n. If M(n/2) denotes
the number of messages already received in each of these schedules, at least
2M(n/2)+n/4 messages have to be exchanged in order to solve leader election.

Proof by induction: We divide the ring into two sub-rings R1 and R2 of size
n/2. These subrings cannot be distinguished from rings with n/2 nodes if no
messages are received from “outsiders”. We can ensure this by not scheduling
such messages until we want to. Note that executing both given open schedules
on R1 and R2 “in paralell” is possible because we control not only the scheduling
of the messages, but also when nodes wake up. By doing so, we make sure that
2M(n/2) messages are sent before the nodes in R1 and R2 learn anything of
each other!

Without loss of generality, R1 contains the maximum identifier. Hence, each
node in R2 must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We “play
god” and look into the future: we check what happens when we close only one
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of these connecting edges. With the argument that n/2 new messages must
be received, we know that there is at least one edge that will produce at least
n/4 more messages when being scheduled. This need not to be sent over the
closed link, but because they are caused by a message over this link, they cannot
involve any message along the other open link in distance n/2. We schedule this
edge and the resulting n/4 messages, and leave the other open.

Lemma 2.12. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) ≥ n

4 (log n + 1).

Proof by induction: For simplicity we assume n being a power of 2. The base
case n = 2 works because of Lemma 2.10 which implies that M(2) ≥ 1 =
2
4 (log 2 + 1). For the induction step, using Lemma 2.11 and the induction
hypothesis we have

M(n) = 2 · M
(n

2

)

+
n

4

≥ 2 ·
(n

8

(

log
n

2
+ 1
))

+
n

4

=
n

4
log n +

n

4
=

n

4
(log n + 1) .

2

Remarks:

• To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Ω(g) if there are constants
x0 and c > 0 such that |f(x)| ≥ c|g(x)| for all x ≥ x0. Again we refer
to standard text books for a formal definition. Rewriting Lemma 2.12 we
get:

Theorem 2.13 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Ω(n log n) message com-
plexity.

2.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as well! First we make some additional
assumptions:

• We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

• We assume that every node starts at the same time.

• The node with the minimum identifier becomes the leader; identifiers are
integers.
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Algorithm 10 Synchronous Leader Election

1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase consists of n

time steps. Node v counts phases, starting with 0.
3: if phase = v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message “v is leader” around the ring
6: end if

Remarks:

• Message complexity is indeed n.

• But the time complexity is huge! If m is the minimum identifier it is m ·n.

• The synchronous start and the non-uniformity assumptions can be drop-
ped by using a wake-up technique (upon receiving a wake-up message,
wake up your clockwise neighbors) and by letting messages travel slowly.

• There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Ω(n log n) as well.

• In general graphs efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see next
chapter), bounding the message complexity is generally more difficult.
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Chapter 3

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit on the simple side. But maybe that’s not really bad
news?!

3.1 Broadcast

Definition 3.1 (Broadcast). A broadcast operation is initiated by a single pro-
cessor, the source. The source wants to send a message to all other nodes in
the system.

Definition 3.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between u and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any node in the graph. The diameter of a graph is the maximum distance
between two arbitrary nodes.

Remarks:

• Clearly there is a close relation between the radius R and the diameter D
of a graph, such as R ≤ D ≤ 2R.

• The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph.
For this graph it has long been believed that the actor Kevin Bacon has
a particularly small radius. The number of hops from Bacon even got a
name, the Bacon Number. In the meantime, however, it has been shown
that there are “better” centers in the Hollywood universe, such as Sean
Connery, Christopher Lee, Rod Steiger, Gene Hackman, or Michael Caine.
The center of other social networks has also been explored, Paul Erdös for
instance is well known in the math community.

Theorem 3.3 (Broadcast Lower Bound). The message complexity of broadcast
is at least n − 1. The source’s radius is a lower bound for the time complexity.

21
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Proof: Every node must receive the message.

Remarks:

• You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search spanning
tree (for a given source), then the time complexity is tight as well.

Definition 3.4 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 3.5 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Remarks:

• This lower bound proof directly brings us to the well known flooding al-
gorithm.

Algorithm 11 Flooding

1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the

message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-

card the message.

Remarks:

• If node v receives the message first from node u, then node v calls node
u parent. This parent relation defines a spanning tree T . If the flooding
algorithm is executed in a synchronous system, then T is a breadth-first
search spanning tree (with respect to the root).

• More interestingly, also in asynchronous systems the flooding algorithm
terminates after R time units, R being the radius of the source. However,
the constructed spanning tree may not be a breadth-first search spanning
tree.

3.2 Convergecast

Convergecast is the same as broadcast, just reversed: Instead of a root sending
a message to all other nodes, all other nodes send information to a root. The
simplest convergecast algorithm is the echo algorithm:

Remarks:

• Usually the echo algorithm is paired with the flooding algorithm, which is
used to let the leaves know that they should start the echo process; this
is known as flooding/echo.
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Algorithm 12 Echo

Require: This algorithm is initiated at the leaves.
1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message

to the parent.

• One can use convergecast for termination detection, for example. If a root
wants to know whether all nodes in the system have finished some task, it
initiates a flooding/echo; the message in the echo algorithm then means
“This subtree has finished the task.”

• Message complexity of the echo algorithm is n − 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the graph.

• The time complexity of the echo algorithm is determined by the radius of
the spanning tree generated by the flooding algorithm.

• The flooding/echo algorithm can do much more than collecting acknowl-
edgements from subtrees. One can for instance use it to compute the num-
ber of nodes in the system, or the maximum ID (for leader election!?), or
the sum of all values stored in the system, or a route-disjoint matching.

• Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation. And
so on . . .

3.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize this
idea by developing the BFS tree layer by layer:

Theorem 3.6 (Analysis of Algorithm 13). The time complexity of Algorithm
13 is O(D2), the message complexity is O(m + nD), where D is the diameter
of the graph, n the number of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in Tp needs at most time 2D. Finding new
neighbors at the leaves costs time 2. Since the BFS tree height is bounded
by the diameter we have D phases, giving a total time complexity of O(D2).
Each node participating in broadcast/echo only receives (broadcasts) at most 1
message and sends (echoes) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m + nD).
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Algorithm 13 Dijkstra BFS

1: The algorithm proceeds in phases. In phase p the nodes with distance p to
the root are detected. Let Tp be the tree in phase p. We start with T1 which
is the root plus all direct neighbors of the root. We start with phase p = 1:

2: repeat
3: The root starts phase p by broadcasting “start p” within Tp.
4: When receiving “start p” a leaf node u of Tp (that is, a node that was

newly discovered in the last phase) sends a “join p + 1” message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree Tp+1.

6: A node v receiving any further “join” message replies with “NACK”.
7: The leaves of Tp collect all the answers of their neighbors; then the leaves

start an echo algorithm back to the root.
8: When the echo process terminates at the root, the root increments the

phase
9: until there was no new node detected

Remarks:

• The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a
neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 14 Bellman-Ford BFS

1: Each node u stores an integer du which corresponds to the distance from u
to the root. Initially droot = 0, and du = ∞ for every other node u.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < du from a neighbor v then
4: node u sets du := y
5: node u sends “y + 1” to all neighbors (except v)
6: end if

Theorem 3.7 (Analysis of Algorithm 14). The time complexity of Algorithm
14 is O(D), the message complexity is O(nm), where D,n,m are defined as in
Theorem 3.6.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
knows by time 0 that it is the root. A node v at distance d has a neighbor u
at distance d − 1. Node u by induction sends a message “d” to v at time d − 1
or before, which is then received by v at time d or before. Message complexity
is easier: A node can reduce its distance at most n − 1 times; each of these
times it sends a message to all its neighbors. If all nodes do this we have O(nm)
messages.
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Remarks:

• Algorithm 13 has the better message complexity and Algorithm 14 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(m + n log3 n) messages and O(D log3 n) time. This “trade-off”
algorithm is beyond the scope of this course.

3.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight ωe.

Definition 3.8 (MST). Given a weighted graph G = (V,E, ω), the MST of G is
a spanning tree T minimizing ω(T ), where ω(G′) =

∑

e∈G′ ωe for any subgraph
G′ ⊆ G.

Remarks:

• In the following we assume that no two edges of the graph have the same
weight. This simplifies the problem as it makes the MST unique; however,
this simplification is not essential as one can always break ties by adding
the IDs of adjacent vertices to the weight.

• Obviously we are interested in computing the MST in a distributed way.
For this we use a well-known lemma:

Definition 3.9 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T ′ ⊆ T a subgraph of T (also called a fragment). Edge e = (u, v) is an
outgoing edge of T ′ if u ∈ T ′ and v /∈ T ′ (or vice versa). The minimum weight
outgoing edge b(T ′) is the so-called blue edge of T ′.

Lemma 3.10. For a given wheighted graph G (such that no two weights are the
same), let T denote the MST, and T ′ be a fragment of T . Then the blue edge
of T ′ is also part of T , i.e., T ′ ∪ b(T ′) ⊆ T .

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e 6= b(T ′) connecting T ′ with the remainder of T . Adding the blue edge b(T ′) to
the MST T we get a cycle including both e and b(T ′). If we remove e from this
cycle we still have a spanning tree, and since by the definition of the blue edge
ωe > ωb(T ′), the weight of that new spanning tree is less than than the weight
of T . We have a contradiction.

Remarks:

• In other words, the blue edges seem to be the key to a distributed al-
gorithm for the MST problem. Since every node itself is a fragment of
the MST, every node directly has a blue edge! All we need to do is to
grow these fragments! Essentially this is a distributed version of Kruskal’s
sequential algorithm.
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• At any given time the nodes of the graph are partitioned into fragments
(rooted subtrees of the MST). Each fragment has a root, the ID of the
fragment is the ID of its root. Each node knows its parent and its children
in the fragment. The algorithm operates in phases. At the beginning of a
phase, nodes know the IDs of the fragments of their neighbor nodes.

Algorithm 15 GHS

1: Initially each node is the root of its own fragment. We proceed in phases:
2: repeat
3: All nodes learn the fragment IDs of their neighbors.
4: The root of each fragment uses flooding/echo in its fragment to determine

the blue edge b = (u, v) of the fragment.
5: The root sends a message to node u; while forwarding the message on the

path from the root to node u all parent-child relations are inverted {such
that u is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u, v).
7: if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly

10: else
11: node v is the new parent of node u
12: end if
13: the newly elected root node informs all nodes in its fragment (again using

flooding/echo) about its identity
14: until all nodes are in the same fragment

Remarks:

• Algorithm 15 was stated in pseudo-code, with a few details not really
explained. For instance, it may be that some fragments are much larger
than others, and because of that some nodes may need to wait for others,
e.g., if node u needs to find out whether neighbor v also wants to merge
over the blue edge b = (u, v). The good news is that all these details can
be solved. We can for instance bound the asynchronicity by guaranteeing
that nodes only start the new phase after the last phase is done, similarly
to the phase-technique of Algorithm 13.

Theorem 3.11 (Analysis of Algorithm 15). The time complexity of Algorithm
15 is O(n log n), the message complexity is O(m log n).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and
O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
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merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most log n phases. The theorem
follows directly.

Remarks:

• Algorithm 15 is called “GHS” after Gallager, Humblet, and Spira, three pi-
oneers in distributed computing. Despite being quite simple the algorithm
won the prestigious Edsger W. Dijkstra Prize in Distributed Computing
in 2004, among other reasons because it was one of the first (1983) non-
trivial asynchronous distributed algorithms. As such it can be seen as one
of the seeds of this research area.

• We presented a simplified version of GHS. The original paper by Gallager
et al. featured an improved message complexity of O(m + n log n).

• In 1987, Awerbuch managed to further improve the GHS algorithm to get
O(n) time and O(m + n log n) message complexity, both asymptotically
optimal.

• The GHS algorithm can be applied in different ways. GHS for instance
directly solves leader election in general graphs: The leader is simply the
last surviving root!
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Chapter 4

Maximal Independent Set

In this chapter we present a first highlight of this course, a fast maximal inde-
pendent set (MIS) algorithm. The algorithm is the first randomized algorithm
that we study in this class. In distributed computing, randomization is a pow-
erful and therefore omnipresent concept, as it allows for relatively simple yet
efficient algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples, matching and vertex coloring (see Chapter
1.1).

4.1 MIS

Definition 4.1 (Independent Set). Given an undirected Graph G = (V,E) an
independent set is a subset of nodes U ⊆ V , such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

2

1

2

Figure 4.1: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).
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Remarks:

• Computing a maximum independent set (MaxIS) is a notoriously difficult
problem. It is equivalent to maximum clique on the complementary graph.
Both problems are NP-hard, in fact not approximable within n

1
2−ǫ.

• In this course we concentrate on the maximal independent set (MIS) prob-
lem. Please note that MIS and MaxIS can be quite different, indeed there
are graphs where the MIS is Θ(n) smaller than the MaxIS.

• Computing a MIS sequentially is trivial: Scan the nodes in arbitrary order.
If a node u does not violate independence, add u to the MIS. If u violates
independence, discard u. So the only question is how to compute a MIS
in a distributed way.

Algorithm 16 Slow MIS

Require: Node IDs
Every node v executes the following code:

1: if all neighbors of v with larger identifiers have decided not to join the MIS
then

2: v decides to join the MIS
3: end if

Remarks:

• Not surprisingly the slow algorithm is not better than the sequential algo-
rithm in the worst case, because there might be one single point of activity
at any time. Formally:

Theorem 4.2 (Analysis of Algorithm 16). Algorithm 16 features a time com-
plexity of O(n) and a message complexity of O(m).

Remarks:

• This is not very exciting.

• There is a relation between independent sets and node coloring (Chapter
1), since each color class is an independent set, however, not necessarily a
MIS. Still, starting with a coloring, one can easily derive a MIS algorithm:
We first choose all nodes of the first color. Then, for each additional color
we add “in parallel” (without conflict) as many nodes as possible. Thus
the following corollary holds:

Corollary 4.3. Given a coloring algorithm that needs C colors and runs in
time T , we can construct a MIS in time C + T .

Remarks:

• Using Theorem 1.17 and Corollary 4.3 we get a distributed determinis-
tic MIS algorithm for trees (and for bounded degree graphs) with time
complexity O(log∗ n).
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• With a lower bound argument one can show that this deterministic MIS
algorithm for rings is asymptotically optimal.

• There have been attempts to extend Algorithm 5 to more general graphs,
however, so far without much success. Below we present a radically dif-
ferent approach that uses randomization. Please note that the algorithm
and the analysis below is not identical with the algorithm in Peleg’s book.

4.2 Fast MIS from 1986

Algorithm 17 Fast MIS

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability 1

2d(v) , where d(v) is the current

degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

• Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the
MIS, then v’s neighbors do not join the MIS at the same time. Step 3
makes sure that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node with
the highest degree will mark itself at some point in step 1.

• So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

Lemma 4.4 (Joining MIS). A node v joins the MIS in step 2 with probability
p ≥ 1

4d(v) .

Proof: Let M be the set of marked nodes in step 1. Let H(v) be the set of
neighbors of v with higher degree, or same degree and higher identifier. Using
independence of v and H(v) in step 1 we get

Pr [v /∈ MIS|v ∈ M ] = Pr [∃w ∈ H(v), w ∈ M |v ∈ M ]

= Pr [∃w ∈ H(v), w ∈ M ]

≤
∑

w∈H(v)

Pr [w ∈ M ] =
∑

w∈H(v)

1

2d(w)

≤
∑

w∈H(v)

1

2d(v)
≤ d(v)

2d(v)
=

1

2
.
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Then

Pr [v ∈ MIS] = Pr [v ∈ MIS|v ∈ M ] · Pr [v ∈ M ] ≥ 1

2
· 1

2d(v)

2

Lemma 4.5 (Good Nodes). A node v is called good if

∑

w∈N(v)

1

2d(w)
≥ 1

6
.

Otherwise we call v a bad node. A good node will be removed in step 3 with
probability p ≥ 1

36 .

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in step 3 of the algorithm.

If there is a neighbor w ∈ N(v) with degree at most 2 we are done: With
Lemma 4.4 the probability that node w joins the MIS is at least 1

8 , and our
good node will be removed in step 3.

So all we need to worry about is that all neighbors have at least degree 3:

For any neighbor w of v we have 1
2d(w) ≤ 1

6 . Since
∑

w∈N(v)

1

2d(w)
≥ 1

6
there is a

subset of neighbors S ⊆ N(v) such that
1

6
≤
∑

w∈S

1

2d(w)
≤ 1

3

We can now bound the probability that node v will be removed. Let therefore
R be the event of v being removed. Again, if a neighbor of v joins the MIS in
step 2, node v will be removed in step 3. We have

Pr [R] ≥ Pr [∃u ∈ S, u ∈ MIS]

≥
∑

u∈S

Pr [u ∈ MIS] −
∑

u,w∈S;u6=w

Pr [u ∈ MIS and w ∈ MIS] .

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after step
1. Using Pr [u ∈ M ] ≥ Pr [u ∈ MIS] we get

Pr [R] ≥
∑

u∈S

Pr [u ∈ MIS] −
∑

u,w∈S;u6=w

Pr [u ∈ M and w ∈ M ]

≥
∑

u∈S

Pr [u ∈ MIS] −
∑

u∈S

∑

w∈S

Pr [u ∈ M ] · Pr [w ∈ M ]

≥
∑

u∈S

1

4d(u)
−
∑

u∈S

∑

w∈S

1

2d(u)

1

2d(w)

≥
∑

u∈S

1

2d(u)

(

1

2
−
∑

w∈S

1

2d(w)

)

≥ 1

6

(

1

2
− 1

3

)

=
1

36
.

2



4.2. FAST MIS FROM 1986 33

Remarks:

• We would be almost finished if we could proof that many nodes are good
in each phase. Unfortunately this is not the case: In a star-graph, for
instance, only a single node is good! We need to find a work-around.

Lemma 4.6 (Good Edges). An edge e = (u, v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 4.7. A bad node has outdegree at least twice its indegree.

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

∑

w∈N(v)

1

2d(w)
≥
∑

w∈S

1

2d(w)
≥
∑

w∈S

1

2d(v)
≥ d(v)

3

1

2d(v)
=

1

6

which means v is good, a contradiction. 2

Continuing the proof of Lemma 4.6: According to Lemma 4.7 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 4.8 (Analysis of Algorithm 17). Algorithm 17 terminates in expected
time O(log n).

Proof: With Lemma 4.5 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 4.6) a constant number of edges will be deleted in each phase.

More formally: With Lemmas 4.5 and 4.6 we know that an edge will be
removed with probability at least 1/72. Let R be the number of edges to be
removed. Using linearity of expectation we know that E [R] ≥ m/72, m being
the total number of edges at the start of a phase. Now let p := Pr [R ≤ E [R] /2].
Bounding the expectation yields

E [R] =
∑

r

Pr [R = r] · r ≤ p · E [R] /2 + (1 − p) · m.

Solving for p we get

p ≤ m − E [R]

m − E [R] /2
<

m − E [R] /2

m
≤ 1 − 1/144.

In other words, with probability at least 1/144 at least m/144 edges are removed
in a phase. After expected O(log m) phases all edges are deleted. Since m ≤ n2

the Theorem follows. 2
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Remarks:

• With a bit of more math one can even show that Algorithm 17 terminates
in time O(log n) “with high probability”.

• The presented algorithm is a simplified version of an algorithm by Michael
Luby, published 1986 in the SIAM Journal of Computing. Around the
same time there have been a number of other papers dealing with the same
or related problems, for instance by Alon, Babai, and Itai, or by Israeli
and Itai. The analysis presented here takes elements of all these papers,
and from other papers on distributed weighted matching. The analysis in
the book by David Peleg is different, and only achieves O(log2 n) time.

• Though not as incredibly fast as the log∗-coloring algorithm for trees, this
algorithm is very general. It works on any graph, needs no identifiers, and
can easily be made asynchronous.

• Surprisingly, much later, there have been half a dozen more papers pub-
lished, with much worse results!! In 2002, for instance, there was a paper
with linear running time, improving on a 1994 paper with cubic running
time, restricted to trees!

• In 2009, Métivier, Robson, Saheb-Djahromi and Zemmari found a slightly
different (and simpler) way to compute a MIS in the same logarithmic
time:

4.3 Fast MIS from 2009

Algorithm 18 Fast MIS 2

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) ∈ [0, 1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w ∈ N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

• Correctness in the sense that the algorithm produces an independent set
is simple: Steps 1 and 2 make sure that if a node v joins the MIS, then
v’s neighbors do not join the MIS at the same time. Step 3 makes sure
that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node with
the globally smallest value will always join the MIS, hence there is progress.

• So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.
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• Our proof will rest on a simple, yet powerful observation about expected
values of random variables that may not be independent :

Theorem 4.9 (Linearity of Expectation). Let Xi, i = 1, . . . , k denote random
variables, then

E

[

∑

i

Xi

]

=
∑

i

E [Xi] .

Proof. It is sufficient to prove E [X + Y ] = E [X]+E [Y ] for two random variables
X and Y , because then the statement follows by induction. Since

Pr [(X,Y ) = (x, y)] = Pr [X = x] · Pr [Y = y|X = x]

= Pr [Y = y] · Pr [X = x|Y = y]

we get that

E [X + Y ] =
∑

(X,Y )=(x,y)

Pr [(X,Y ) = (x, y)] · (x + y)

=
∑

X=x

∑

Y =y

Pr [X = x] · Pr [Y = y|X = x] · x

+
∑

Y =y

∑

X=x

Pr [Y = y] · Pr [X = x|Y = y] · y

=
∑

X=x

Pr [X = x] · x +
∑

Y =y

Pr [Y = y] · y

= E [X] + E [Y ] .

Remarks:

• How can we prove that the algorithm only needs O(log n) phases in expec-
tation? It would be great if this algorithm managed to remove a constant
fraction of nodes in each phase. Unfortunately, it does not.

• Instead we will prove that the number of edges decreases quickly. Again,
it would be great if any single edge was removed with constant probability
in step 3. But again, unfortunately, this is not the case.

• Maybe we can argue about the expected number of edges to be removed
in one single phase? Let’s see: A node v enters the MIS with probability
1/(d(v) + 1), where d(v) is the degree of node v. By doing so, not only
v’s edges are removed, but indeed all the edges of v’s neighbors as well –
generally these are much more than d(v) edges. So there is hope, however,
we need to be careful: If we do this the most naive way, we will count the
same edge many times.

• How can we fix this? The nice observation is that it is enough to count
just some of the removed edges. Given a new MIS node v and a neighbor
w ∈ N(v), we count the edges only if r(v) < r(x) for all x ∈ N(w). This
looks promising. In a star graph, for instance, only the smallest random
value can be accounted for removing all the edges of the star.
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Lemma 4.10 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof: To simplify the notation, at the start of our phase, the graph is simply
G = (V,E). Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w)
for all neighbors w ∈ N(v). In addition, r(v) < r(x) for all neighbors x of a
neighbor w of v. The probability of this event is at least 1/(d(v) + d(w)), since
d(v) + d(w) is the maximum number of nodes adjacent to v or w (or both). As
v joins the MIS, all edges (w, x) will be removed; there are d(w) of these edges.

Whether we remove the edges adjacent to w is a random variable. If it occurs
it has the value d(w), if not it has the value 0. For each edge {v, w} we have
two such variables, the event (v → w) for v joining the MIS, and symmetrically
the event (w → v) for w joining the MIS. Due to Theorem 4.9, the expected
value of the sum X of all these random variables is at least

E [X] =
∑

(v,w)∈E

Pr [Event (v → w)] · d(w) + Pr [Event (w → v)] · d(v)

≥
∑

(v,w)∈E

d(w)

d(v) + d(w)
+

d(v)

d(w) + d(v)

=
∑

(v,w)∈E

1 = |E|.

In other words, in expectation all edges are removed in a single phase?!?
Probably not. This means that we still counted some edges more than once.
Indeed, for an edge {v, w} ∈ E our random variable X includes the edge if the
event (u → v) happens, but X also includes the edge if the event (x → w)
happens. So we may have counted the edge {v, w} twice. Fortunately however,
not more than twice, because at most one event (· → v) and at most one event
(· → w) can happen. If (u → v) happens, we know that r(u) < r(w) for all
w ∈ N(v); hence another (u′ → v) cannot happen because r(u′) > r(u) ∈ N(v).
Therefore the random variable X must be divided by 2. In other words, in
expectation at least half of the edges are removed.

Remarks:

• This enables us to follow a bound on the expected running time of Algo-
rithm 18 quite easily.

Theorem 4.11 (Expected running time of Algorithm 18). The expected running
time of Algorithm 18 is 3 log4/3 m ∈ O(log n).

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all)
edges are removed. With probability at least 2/3 less than 1/4 of edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3 · 1 + 2/3 · 1/4 = 1/2. This contradicts Lemma 4.10.

Hence, at least every third phase is “good” and removes at least a quarter
of the edges. To get rid of all edges (but a small constant) we need log4/3 m
good phases, hence a total of 3 log4/3 m phases are enough in expectation.
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Remarks:

• Sometimes one expects a bit more of an algorithm: Not only should the
expected time to terminate be good, but the algorithm should always
terminate quickly. As this is impossible in randomized algorithms (after
all, the random choices may be “unlucky” all the time!), researchers often
settle for a compromise, and just demand that the probability that the
algorithm does not terminate in the specified time can be made absurdly
small. For our algorithm, this can be deduced from Lemma 4.10 and
another standard tool, namely Chernoff’s Bound.

Definition 4.12 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1− 1/nc

for any choice of c ≥ 1. Here c may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 4.13 (Chernoff’s Bound). Let X =
∑k

i=1 Xi be the sum of k inde-
pendent 0− 1 random variables, taking the value 1 with probability p ≤ 1

2 . Then
Chernoff’s bound states for every α > 0

Pr
[

|X − E[X]| ≥
√

α k E[X]
]

≤ 2−Ω(αk).

Corollary 4.14 (Running Time of Algorithm 18). Algorithm 18 terminates
w.h.p. in O(log n) time.

Proof: We have p = 1/3 and choose α = 1/12. Thus, the inequality becomes

Pr [|X − k/3| ≥ k/6] ≤ 2−Ω(k).

Hence, for some sufficiently large k ∈ O(c log n) we have that

Pr
[

X < log4/3 m
]

≤ Pr [X < k/6] ≤ 2−c log n = 1/nc,

i.e., the probability that the algorithm has not terminated after O(log n) steps
is smaller than 1/nc as claimed.

Remarks:

• The algorithm can be improved a bit more even. Drawing random real
numbers in each phase for instance is not necessary. One can achieve
the same by sending only a total of O(log n) random (and as many non-
random) bits over each edge.

• One of the main open problems in distributed computing is whether one
can beat this logarithmic time, or at least achieve it with a deterministic
algorithm.

• Let’s turn our attention to applications of MIS next.
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4.4 Applications

Definition 4.15 (Matching). Given a graph G = (V,E) a matching is a subset
of edges M ⊆ E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

• In contrast to MaxIS, a maximum matching can be found in polynomial
time (Blossom algorithm by Jack Edmonds), and is also easy to approxi-
mate (in fact, already any maximal matching is a 2-approximation).

• An independent set algorithm is also a matching algorithm: Let G =
(V,E) be the graph for which we want to construct the matching. The
auxiliary graph G′ is defined as follows: for every edge in G there is a node
in G′; two nodes in G′ are connected by an edge if their respective edges
in G are adjacent. A (maximal) independent set in G′ is a (maximal)
matching in G, and vice versa. Using Algorithm 18 directly produces a
O(log n) bound for maximal matching.

• More importantly, our MIS algorithm can also be used for vertex coloring
(Problem 1.1):

Algorithm 19 General Graph Coloring

1: Given a graph G = (V,E) we virtually build a graph G′ = (V ′, E′) as
follows:

2: Every node v ∈ V clones itself d(v)+1 times (v0, . . . , vd(v) ∈ V ′), d(v) being
the degree of v in G.

3: The edge set E′ of G′ is as follows:
4: First all clones are in a clique: (vi, vj) ∈ E′, for all v ∈ V and all 0 ≤ i <

j ≤ d(v)
5: Second all ith clones of neighbors in the original graph G are connected:

(ui, vi) ∈ E′, for all (u, v) ∈ E and all 0 ≤ i ≤ min(d(u), d(v)).
6: Now we simply run (simulate) the fast MIS Algorithm 18 on G′.
7: If node vi is in the MIS in G′, then node v gets color i.

Theorem 4.16 (Analysis of Algorithm 19). Algorithm 19 (∆ + 1)-colors an
arbitrary graph in O(log n) time, with high probability, ∆ being the largest degree
in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G′ has O

(

n2
)

nodes and the exponent
becomes a constant factor when applying the logarithm.
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Remarks:

• This solves our open problem from Chapter 1.1!

• Together with Corollary 4.3 we get quite close ties between (∆+1)-coloring
and the MIS problem.

• However, in general Algorithm 19 is not the best distributed algorithm for
O(∆)-coloring. For fast distributed vertex coloring please check Kotha-
palli, Onus, Scheideler, Schindelhauer, IPDPS 2006. This algorithm is
based on a O(log log n) time edge coloring algorithm by Grable and Pan-
conesi, 1997.
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Chapter 5

Shared Memory

5.1 Introduction

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).

A third major model is somehow between these two extremes, the shared
memory model. In a shared memory system, asynchronous processes (or proces-
sors) communicate via a common memory area of shared variables or registers:

Definition 5.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. Apart from this shared memory, processes can also have
some local (private) memory.

Remarks:

• Various shared memory systems exist. A main difference is how they allow
processes to access the shared memory. All systems can atomically read
or write a shared register R. Most systems do allow for advanced atomic
read-modify-write (RMW) operations, for example:

– test-and-set(R): t := R; R := 1; return t

– fetch-and-add(R, x): t := R; R := R + x; return t

– compare-and-swap(R, x, y): if R = x then R := y; return true else
return false; endif;

– load-link/store-conditional: Load-link returns the current value of
the specified register. A subsequent store-conditional to the same
register will store a new value (and return true) only if no updates
have occurred to that register since the load-link. If any updates
have occurred, the store-conditional is guaranteed to fail (and return
false), even if the value read by the load-link has since been restored.

41
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• Maurice Herlihy suggested that the power of RMW operations can be
measured with the so-called consensus-number : The consensus-number
of a RMW operation defines whether one can solve consensus for k pro-
cesses. Test-and-set for instance has consensus-number 2 (one can solve
consensus with 2 processes, but not 3), whereas the consensus-number of
compare-and-swap is infinite. In his 1991 paper, Maurice Herlihy proved
the “universality of consensus”, i.e., the power of a shared memory sys-
tem is determined by the consensus-number. This insight had a remark-
able theoretical and practical impact. In practice for instance, hardware
designers stopped developing shared memory systems supporting weak
RMW operations. Consequently, Maurice Herlihy was awarded the Dijk-
stra Prize in Distributed Computing in 2003.

• Many of the results derived in the message passing model have an equiva-
lent in the shared memory model. Consensus for instance is traditionally
studied in the shared memory model.

• Whereas programming a message passing system is rather tricky (in partic-
ular if fault-tolerance has to be integrated), programming a shared mem-
ory system is generally considered easier, as programmers are given access
to global variables directly and do not need to worry about exchanging
messages correctly. Because of this, even distributed systems which phys-
ically communicate by exchanging messages can often be programmed
through a shared memory middleware, making the programmer’s life eas-
ier.

• We will most likely find the general spirit of shared memory systems in
upcoming multi-core architectures. As for programming style, the multi-
core community seems to favor an accelerated version of shared memory,
transactional memory.

• From a message passing perspective, the shared memory model is like a
bipartite graph: One one side you have the processes (the nodes) which
pretty much behave like nodes in the message passing model (asynchro-
nous, maybe failures). On the other side you have the shared registers,
which just work perfectly (no failures, no delay).

5.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 5.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds
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• Mutual Exclusion: At all times at most one process is in the critical sec-
tion.

• No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

• No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

• Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 20 shows an example with the test-and-set primitive.

Algorithm 20 Mutual Exclusion: Test-and-Set

Input: Shared register R := 0
<Entry>
1: repeat
2: r := test-and-set(R)
3: until r = 0

<Critical Section>
4: . . .

<Exit>
5: R := 0

<Remainder Code>
6: . . .

Theorem 5.3. Algorithm 20 solves the mutual exclusion problem as in Defini-
tion 5.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ti. At time t′i process pi resets the shared register R to 0. Between ti
and t′i no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.

Proofing no deadlock is similar: One of the processes loitering in the entry
section will successfully test-and-set as soon as the process in the critical section
exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Remarks:

• No lockout, on the other hand, is not given by this algorithm. Even with
only two processes there are asynchronous executions where always the
same process wins the test-and-set.

• Algorithm 20 can be adapted to guarantee fairness (no lockout), essentially
by ordering the processes in the entry section in a queue.
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• A natural question is whether one can achieve mutual exclusion with only
reads and writes, that is without advanced RMW operations. The answer
is yes!

Our read/write mutual exclusion algorithm is for two processes p0 and p1 only.
In the remarks we discuss how it can be extended. The general idea is that
process pi has to mark its desire to enter the critical section in a “want” register
Wi by setting Wi := 1. Only if the other process is not interested (W1−i = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable Π. See Algorithm 21.

Algorithm 21 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared registers W0,W1,Π, all initially 0.
Code for process pi , i = {0, 1}
<Entry>
1: Wi := 1
2: Π := 1 − i
3: repeat until Π = i or W1−i = 0

<Critical Section>
4: . . .

<Exit>
5: Wi := 0

<Remainder Code>
6: . . .

Remarks:

• Note that line 3 in Algorithm 21 represents a “spinlock” or “busy-wait”,
similarly to the lines 1-3 in Algorithm 20.

Theorem 5.4. Algorithm 21 solves the mutual exclusion problem as in Defini-
tion 5.2.

Proof. The shared variable Π elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pΠ can access the
critical section because of Π. The other process p1−Π cannot access the critical
section because wΠ = 1 (and Π 6= 1 − Π). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with Π: Process pΠ gets direct access to the
critical section, no matter what the other process does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable Π also no lockout (fairness) is achieved: If a
process pi loses against its competitor p1−i in line 2, it will have to wait until
the competitor resets W1−i := 0 in the exit section. If process pi is unlucky it
will not check W1−i = 0 early enough before process p1−i sets W1−i := 1 again
in line 1. However, as soon as p1−i hits line 2, process pi gets the priority due
to Π, and can enter the critical section.
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Remarks:

• Extending Peterson’s Algorithm to more than 2 processes can be done by
a tournament tree, like in tennis. With n processes every process needs to
win log n matches before it can enter the critical section. More precisely,
each process starts at the bottom level of a binary tree, and proceeds to
the parent level if winning. Once winning the root of the tree it can enter
the critical section. Thanks to the priority variables Π at each node of the
binary tree, we inherit all the properties of Definition 5.2.

5.3 Store & Collect

5.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes p1, . . . , pn. Every process pi has a read/write register Ri in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 5.5 (Collect). There are two operations: A store(val) by process
pi sets val to be the latest value of its register Ri. A collect operation returns
a view, a partial function V from the set of processes to a set of values, where
V (pi) is the latest value stored by pi, for each process pi. For a collect

operation cop, the following validity properties must hold for every process pi:

• If V (pi) = ⊥, then no store operation by pi precedes cop.

• If V (pi) = v 6= ⊥, then v is the value of a store operation sop of pi that
does not follow cop, and there is no store operation by pi that follows
sop and precedes cop.

Hence, a collect operation cop should not read from the future or miss a
preceding store operation sop.

We assume that the read/write register Ri of every process pi is initialized
to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 22.

Algorithm 22 Collect: Simple (Non-Adaptive) Solution

Operation store(val) (by process pi) :
1: Ri := val

Operation collect:
2: for i := 1 to n do
3: V (pi) := Ri // read register Ri

4: end for



46 CHAPTER 5. SHARED MEMORY

Remarks:

• Algorithm 22 clearly works. The step complexity of every store operation
is 1, the step complexity of a collect operation is n.

• At first sight, the step complexities of Algorithm 22 seem optimal. Because
there are n processes, there clearly are cases in which a collect operation
needs to read all n registers. However, there are also scenarios in which
the step complexity of the collect operation seems very costly. Assume
that there are only two processes pi and pj that have stored a value in
their registers Ri and Rj . In this case, a collect in principle only needs
to read the registers Ri and Rj and can ignore all the other registers.

• Assume that up to a certain time t, k ≤ n processes have finished or
started at least one operation. We call an operation op at time t adap-
tive to contention if the step complexity of op only depends on k and is
independent of n.

• In the following, we will see how to implement adaptive versions of store

and collect.

5.3.2 Splitters

Algorithm 23 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by process pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 5.6 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k − 1 processes enter with left and right, respectively.

Hence, it is guaranteed that if a single process enters the splitter, then it
obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain
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k processors

at most 1

left
at most k−1

right
at most k−1

stop

Figure 5.1: A Splitter

different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 5.1. The code
implementing a splitter is given by Algorithm 23.

Lemma 5.7. Algorithm 23 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that i is the last process that sets X := i. If i does
not return right, it will find X = i in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume pi and pj

are two processes that return stop and assume that pi sets X := i before pj sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time pi arrives
at line 6, X 6= i (pj and maybe some other processes have overwritten X by
then). Therefore, pi does not return stop and we get a contradiction to the
assumption that both pi and pj return stop.

5.3.3 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variable MS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 24.

Theorem 5.8. Algorithm 24 correctly implements store and collect. Let k
be the number of participating processes. The step complexity of the first store

of a process pi is O(k), the step complexity of every additional store of pi is
O(1), and the step complexity of collect is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most k − 1 ≤ n − 1 when
invoking the first store operation to prove correctness. We prove that at most
k − i processes enter a subtree at depth i (i.e., a subtree where the root has
distance i to the root of the whole tree). By definition of k, the number of
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Algorithm 24 Adaptive Collect: Binary Tree Algorithm

Operation store(val) (by process pi) :
1: Ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; V (pi) := Ri // read value of process pi

20: end if
21: end for // V (pi) = ⊥ for all other processes

processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For i > 1, the claim follows by induction because of the at most k − i
processes entering the splitter at the root of a depth i subtree, at most k− i− 1
obtain left and right, respectively. Hence, at the latest when reaching depth
k − 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of store is
O(k).

To show that the step complexity of collect is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a tree,
where k processes access the root. We claim that xk ≤ 2k − 1, which is true
for k = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1, . . . , k − 1. Not all k processes may exit
the splitter with left (or right), i.e., kl ≤ k − 1 processes will turn left and
kr ≤ min{k − kl, k − 1} turn right. The left and right children of the root are
the roots of their subtrees, hence the induction hypothesis yields

xk ≤ xkl
+ xkr

+ 1 ≤ (2kl − 1) + (2kr − 1) + 1 ≤ 2k − 1,

concluding induction and proof.
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left

right

Figure 5.2: 5 × 5 Splitter Matrix

Remarks:

• The step complexities of Algorithm 24 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal. In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 24
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

5.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n2 splitters in an n×n
matrix as shown in Figure 5.2. The algorithm is analogous to Algorithm 24.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

Theorem 5.9. Let k be the number of participating processes. The step com-
plexity of the first store of a process pi is O(k), the step complexity of every
additional store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi

be the number of processes entering a splitter in row i. By induction on i, we
show that xi ≤ k − i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row i−1 and column j. By the properties of splitters, not all processes entering
the splitter in row i − 1 and column j obtain left. Therefore, not all processes
entering a splitter in row i− 1 move on to row i. Because at most one processes
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stays in every row, we get that xi ≤ k − i. Similarly, the number of processes
entering column j is at most k− j. Hence, every processes stops at the latest in
row k−1 and column k−1 and the number of marked splitters is at most O(k2).
Thus, the step complexity of collect is at most O(k2). Because the longest
path in the splitter matrix is 2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that the
number of processes entering the splitter in row i and column j is at most
k − i − j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n × n matrix of splitters.

• The binary tree algorithm can be made space efficient by using a random-
ized version of a splitter. Whenever returning left or right, a randomized
splitter returns left or right with probability 1/2. With high probability,
it then suffices to allocate a binary tree of depth O(log n).

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.



Chapter 6

Consensus

This chapter is the first to deal with fault tolerance, one of the most fundamental
aspects of distributed computing. Indeed, in contrast to a system with a single
processor, having a distributed system may permit getting away with failures
and malfunctions of parts of the system. This line of research was motivated
by the basic question whether, e.g., putting two (or three?) computers into
the cockpit of a plane will make the plane more reliable. Clearly fault-tolerance
often comes at a price, as having more than one decision-maker often complicates
decision-making.

6.1 Impossibility of Consensus

Imagine two cautious generals who want to attack a common enemy.1 Their
only means of communication are messengers. Unfortunately, the route of these
messengers leads through hostile enemy territory, so there is a chance that a
messenger does not make it. Only if both generals attack at the very same time
the enemy can be defeated. Can we devise a protocol such that the two generals
can agree on an attack time? Clearly general A can send a message to general
B asking to e.g. “attack at 6am”. However, general A cannot be sure that
this message will make it, so she asks for a confirmation. The problem is that
general B getting the message cannot be sure that her confirmation will reach
general A. If the confirmation message indeed is destroyed, general A cannot
distinguish this case from the case where general B did not even get the attack
information. So, to be save, general B herself will ask for a confirmation of her
confirmation. Taking again the position of general A we can similarly derive
that she cannot be sure unless she also gets a confirmation of the confirmation
of the confirmation. . .

To make things worse, also different approaches do not seem to work. In
fact it can be shown that this two generals problem cannot be solved, in other
words, there is no finite protocol which lets the two generals find consensus! To
show this, we need to be a bit more formal:

1If you don’t fancy the martial tone of this classic example, feel free to think about some-
thing else, for instance two friends trying to make plans for dinner over instant messaging
software, or two lecturers sharing the teaching load of a course trying to figure out who is in
charge of the next lecture.
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Definition 6.1 (Consensus). Consider a distributed system with n nodes. Each
node i has an input xi. A solution of the consensus problem must guarantee the
following:

• Termination: Every non-faulty node eventually decides.

• Agreement: All non-faulty nodes decide on the same value.

• Validity: The decided value must be the input of at least one node.

Remarks:

• The validity condition infers that if all nodes have the same input x, then
the nodes need to decide on x. Please note that consensus is not demo-
cratic, it may well be that the nodes decide on an input value promoted
by a small minority.

• Whether consensus is possible depends on many parameters of the dis-
tributed system, in particular whether the system is synchronous or asyn-
chronous, or what “faulty” means. In the following we study some simple
variants to get a feeling for the problem.

• Consensus is a powerful primitive. With established consensus almost
everything can be computed in a distributed system, e.g. a leader.

Given a distributed asynchronous message passing system with n ≥ 2 nodes.
All nodes can communicate directly with all other nodes, simply by sending a
message. In other words, the communication graph is the complete graph. Can
the consensus problem be solved? Yes!

Algorithm 25 Trivial Consensus

1: Each node has an input
2: We have a leader, e.g. the node with the highest ID
3: if node v is the leader then
4: the leader shall simply decide on its own input
5: else
6: send message to the leader asking for its input
7: wait for answer message by leader, and decide on that
8: end if

Remarks:

• This algorithm is quite simple, and at first sight seems to work perfectly,
as all three consensus conditions of Definition 6.1 are fulfilled.

• However, the algorithm is not fault-tolerant at all. If the leader crashes
before being able to answer all requests, there are nodes which will never
terminate, and hence violate the termination condition. Is there a deter-
ministic protocol that can achieve consensus in an asynchronous system,
even in the presence of failures? Let’s first try something slightly different.
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Definition 6.2 (Reliable Broadcast). Consider an asynchronous distributed
system with n nodes that may crash. Any two nodes can exchange messages,
i.e., the communication graph is complete. We want node v to send a reliable
broadcast to the n − 1 other nodes. Reliable means that either nobody receives
the message, or everybody receives the message.

Remarks:

• This seems to be quite similar to consensus, right?

• The main problem is that the sender may crash while sending the message
to the n− 1 other nodes such that some of them get the message, and the
others not. We need a technique that deals with this case:

Algorithm 26 Reliable Broadcast

1: if node v is the source of message m then
2: send message m to each of the n − 1 other nodes
3: upon receiving m from any other node: broadcast succeeded!
4: else
5: upon receiving message m for the first time:
6: send message m to each of the n − 1 other nodes
7: end if

Theorem 6.3. Algorithm 26 solves reliable broadcast as in Definition 6.2.

Proof. First we should note that we do not care about nodes that crash during
the execution: whether or not they receive the message is irrelevant since they
crashed anyway. If a single non-faulty node u received the message (no matter
how, it may be that it received it through a path of crashed nodes) all non-
faulty nodes will receive the message through u. If no non-faulty node receives
the message, we are fine as well!

Remarks:

• While it is clear that we could also solve reliable broadcast by means of a
consensus protocol (first send message, then agree on having received it),
the opposite seems more tricky!

• No wonder, it cannot be done!! For the presentation of this impossibility
result we use the read/write shared memory model introduced in Chapter
5. Not only was the proof originally conceived in the shared memory
model, it is also cleaner.

Definition 6.4 (Univalent, Bivalent). A distributed system is called x-valent
if the outcome of a computation will be x. An x-valent system is also called
univalent. If, depending on the execution, still more than one possible outcome
is feasible, the system is called multivalent. If exactly two outcomes are still
possible, the system is called bivalent.

Theorem 6.5. In an asynchronous shared memory system with n > 1 nodes,
and node crash failures (but no memory failures!) consensus as in Definition
6.1 cannot be achieved by a deterministic algorithm.
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Proof. Let us simplify the proof by setting n = 2. We have processes u and v,
with input values xu and xv. Further let the input values be binary, either 0 or
1.

First we have to make sure that there are input values such that initially the
system is bivalent. If xu = 0 and xv = 0 the system is 0-valent, because of the
validity condition (Definition 6.1). Even in the case where process v immediately
crashes the system remains 0-valent. Similarly if both input values are 1 and
process u immediately crashes the system is 1-valent. If xu = 0 and xv = 1 and
v immediately crashes, process u cannot distinguish from both having input 0,
equivalently if u immediately crashes, process v cannot distinguish from both
having 1, hence the system is bivalent!

In order to solve consensus an algorithm needs to terminate. All non-faulty
processes need to decide on the same value x (agreement condition of Definition
6.1), in other words, at some instant this value x must be known to the system
as a whole, meaning that no matter what the execution is, the system will be
x-valent. In other words, the system needs to change from bivalent to univalent.
We may ask ourselves what can cause this change in a deterministic asynchro-
nous shared memory algorithm? We need an element of non-determinism; if
everything happens deterministically the system would have been x-valent even
after initialization which we proved to be impossible already.

The only nondeterministic elements in our model are the asynchrony of ac-
cessing the memory and crashing processes. Initially and after every memory
access, each process decides what to do next: Read or write a memory cell or
terminate with a decision. We take control of the scheduling, either choosing
which request is served next or making a process crash. Now we hope for a crit-
ical bivalent state with more than one memory request, and depending which
memory request is served next the system is going to switch from bivalent to
univalent. More concretely, if process u is being served next the system is going
x-valent, if process v (with v 6= u) is served next the system is going y-valent
(with y 6= x). We have several cases:

• If the operations of processes u and v target different memory cells, pro-
cesses cannot distinguish which memory request was executed first. Hence
the local states of the processes are identical after serving both operations
and the state cannot be critical.

• The same argument holds if both processes want to read the same register.
Nobody can distinguish which read was first, and the state cannot be
critical.

• If process u reads memory cell c, and process v writes memory cell c,
the scheduler first executes u’s read. Now process v cannot distinguish
whether that read of u did or did not happen before its write. If it did
happen, v should decide on x, if it did not happen, v should decide y. But
since v does not know which one is true, it needs to be informed about
it by u. We prevent this by making u crash. Thus the state can only be
univalent if v never decides, violating the termination condition!

• Also if both processes write the same memory cell we have the same issue,
since the second writer will immediately overwrite the first writer, and
hence the second writer cannot know whether the first write happened at
all. Again, the state cannot be critical.



6.1. IMPOSSIBILITY OF CONSENSUS 55

Hence, if we are unlucky (and in a worst case, we are!) there is no critical
state. In other words, the system will remain bivalent forever, and consensus is
impossible.

Remarks:

• The proof presented is a variant of a proof by Michael Fischer, Nancy
Lynch and Michael Paterson, a classic result in distributed computing.
The proof was motivated by the problem of committing transactions in
distributed database systems, but is sufficiently general that it directly
implies the impossibility of a number of related problems, including con-
sensus. The proof also is pretty robust with regard to different communi-
cation models.

• The FLP (Fischer, Lynch, Paterson) paper won the 2001 PODC Influential
Paper Award, which later was renamed Dijkstra Prize.

• One might argue that FLP destroys all the fun in distributed computing,
as it makes so many things impossible! For instance, it seems impossible to
have a distributed database where the nodes can reach consensus whether
to commit a transaction or not.

• So are two-phase-commit (2PC), three-phase-commit (3PC) et al. wrong?!
No, not really, but sometimes they just do not commit!

• What about turning some other knobs of the model? Can we have con-
sensus in a message passing system? No. Can we have consensus in
synchronous systems? Yes, even if all but one node fails!

• Can we have consensus in synchronous systems even if some nodes are
mischievous, and behave much worse than simply crashing, and send for
example contradicting information to different nodes? This is known as
Byzantine behavior. Yes, this is also possible, as long as the Byzantine
nodes are strictly less than a third of all the nodes. This was shown
by Marshall Pease, Robert Shostak, and Leslie Lamport in 1980. Their
work won the 2005 Dijkstra Prize, and is one of the cornerstones not only
in distributed computing but also information security. Indeed this work
was motivated by the “fault-tolerance in planes” example. Pease, Shostak,
and Lamport noticed that the computers they were given to implement a
fault-tolerant fighter plane at times behaved strangely. Before crashing,
these computers would start behaving quite randomly, sending out weird
messages. At some point Pease et al. decided that a malicious behavior
model would be the most appropriate to be on the save side. Being able to
allow strictly less than a third Byzantine nodes is quite counterintuitive;
even today many systems are built with three copies. In light of the result
of Pease et al. this is a serious mistake! If you want to be tolerant against
a single Byzantine machine, you need four copies, not three!

• Finally, FLP only prohibits deterministic algorithms! So can we solve
consensus if we use randomization? The answer again is yes! We will
study this in the remainder of this chapter.
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6.2 Randomized Consensus

Can we solve consensus if we allow randomization? Yes. The following algorithm
solves Consensus even in face of Byzantine errors, i.e., malicious behavior of
some of the nodes. To simplify arguments we assume that at most f nodes will
fail (crash) with n > 9f , and that we only solve binary consensus, that is, the
input values are 0 and 1. The general idea is that nodes try to push their input
value; if other nodes do not follow they will try to push one of the suggested
values randomly. The full algorithm is in Algorithm 27.

Algorithm 27 Randomized Consensus

1: node u starts with input bit xu ∈ {0, 1}, round:=1.
2: broadcast BID(xu, round)
3: repeat
4: wait for n − f BID messages of current round
5: if at least n − f messages have value x then
6: xu := x; decide on x
7: else if at least n − 2f messages have value x then
8: xu := x
9: else

10: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
11: end if
12: round := round + 1
13: broadcast BID(xu, round)
14: until decided

Theorem 6.6. Algorithm 27 solves consensus as in Definition 6.1 even if up
to f < n/9 nodes exhibit Byzantine failures.

Proof. First note that it is not a problem to wait for n − f BID messages in
line 4 since at most f nodes are corrupt. If all nodes have the same input value
x, then all (except the f Byzantine nodes) will bid for the same value x. Thus,
every node receives at least n − 2f BID messages containing x, deciding on x
in the first round already. We have consensus!

If the nodes have different (binary) input values the validity condition be-
comes trivial as any result is fine. What about agreement? Let u be one of
the first nodes to decide on value x (in line 6). It may happen that due to
asynchronicity another node v received messages from a different subset of the
nodes, however, at most f senders may be different. Taking into account that
Byzantine nodes may lie, i.e., send different BIDs to different nodes, f addi-
tional BID messages received by v may differ from those received by u. Since
node u had at least n − 2f BID messages with value x, node v has at least
n − 4f BID messages with x. Hence every correct node will bid for x in the
next round, and then decide on x.

So we only need to worry about termination! We already have seen that
as soon as one correct node terminates (in line 6) everybody terminates in the
next round. So what are the chances that some node u terminates in line 6?
Well, if push comes to shove we can still hope that all correct nodes randomly
propose the same value (in line 10). Maybe there are some nodes not choosing
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at random (i.e., entering line 8), but they unanimously propose either 0 or 1:
For the sake of contradiction, assume that both 0 and 1 are proposed in line
8. This means that both 0 and 1 had been proposed by at least n − 5f correct
nodes. In other words, we have a total of 2(n − 5f) + f = n + (n − 9f) > n
nodes. Contradiction!

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f). If so, all will send the same BID, and
the algorithm terminates. So the expected running time is smaller than 2n.

Remarks:

• The presentation of Algorithm 27 is a simplification of the typical presen-
tation in text books.

• What about an algorithm that allows for crashes only, but can manage
more failures? Good news! Slightly changing the presented algorithm will
do that for f < n/4! See exercises.

• Unfortunately Algorithm 27 is still impractical as termination is awfully
slow. In expectation about the same number of nodes choose 1 or 0 in line
10. Termination would be much more efficient if all nodes chose the same
random value in line 10! So why not simply replacing line 10 with “choose
xu := 1”?!? The problem is that a majority of nodes may see a majority
of 0 bids, hence proposing 0 in the next round. Without randomization it
is impossible to get out of this equilibrium. (Moreover, this approach is
deterministic, contradicting Theorem 6.5.)

• The idea is to replace line 10 with a subroutine where all nodes compute
a so-called shared (or common, or global) coin. A shared coin is a random
variable that is 0 with constant probability and 1 with constant probabil-
ity. Sounds like magic, but it isn’t! We assume at most f < n/3 nodes
may crash:

Algorithm 28 Shared Coin (code for node u)

1: set local coin xu := 0 with probability 1/n, else xu := 1
2: use reliable broadcast to tell everybody about your local coin xu

3: memorize all coins you get by others in the set cu

4: wait for exactly n − f coins
5: copy these coins into your local set su (but keep learning coins)
6: use reliable broadcast to tell everybody about your set su

7: wait for exactly n − f sets sv (which satisfy sv ⊆ cu)
8: if seen at least a single coin 0 then
9: return 0

10: else
11: return 1
12: end if

Theorem 6.7. If f < n/3 nodes crash, Algorithm 28 implements a shared coin.
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Proof. Since only f nodes may crash, each node sees at least n − f coins and
sets in lines 4 resp. 7. Thanks to the reliable broadcast protocol each node
eventually sees all the coins in the other sets. In other words, the algorithm
terminates in O(1) time.

The general idea is that a third of the coins are being seen by everybody. If
there is a 0 among these coins, everybody will see that 0. If not, chances are
high that there is no 0 at all! Here are the details:

Let u be the first node to terminate (satisfy line 7). For u we draw a matrix
of all the seen sets sv (columns) and all coins cu seen by node u (rows). Here is
an example with n = 7, f = 2, n − f = 5:

s1 s3 s5 s6 s7

c1 X X X X X
c2 X X X
c3 X X X X X
c5 X X X X
c6 X X X X
c7 X X X X

Note that there are exactly (n − f)2 X’s in this matrix as node u has seen
exactly n − f sets (line 7) each having exactly n − f coins (lines 4 to 6). We
need two little helper lemmas:

Lemma 6.8. There are at least f + 1 rows that have at least f + 1 X’s

Proof. Assume (for the sake of contradiction) that this is not the case. Then
at most f rows have all n − f X’s, and all other rows (at most n − f) have at
most f X’s. In other words, the number of total X’s is bounded by

|X| ≤ f · (n − f) + (n − f) · f = 2f(n − f).

Using n > 3f we get n − f > 2f , and hence |X| ≤ 2f(n − f) < (n − f)2. This
is a contradiction to having exactly (n − f)2 X’s!

Lemma 6.9. Let W be the set of local coins for which the corresponding matrix
row has more than f X’s. All local coins in the set W are seen by all nodes that
terminate.

Proof. Let w ∈ W be such a local coin. By definition of W we know that w is
in at least f + 1 seen sets. Since each node must see at least n − f seen sets
before terminating, each node has seen at least one of these sets, and hence w
is seen by everybody terminating.

Continuing the proof of Theorem 6.7: With probability (1− 1/n)n ≈ 1/e ≈ .37
all nodes chose their local coin equal to 1, and 1 is decided. With probability
1 − (1 − 1/n)|W | there is at least one 0 in W . With Lemma 6.8 we know that
|W | ≈ n/3, hence the probability is about 1− (1−1/n)n/3 ≈ 1− (1/e)1/3 ≈ .28.
With Lemma 6.9 this 0 is seen by all, and hence everybody will decide 0. So
indeed we have a shared coin.

Theorem 6.10. Plugging Algorithm 28 into Algorithm 27 we get a randomized
consensus algorithm which finishes in a constant expected number of rounds.
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Remarks:

• If some nodes go into line 8 of Algorithm 27 the others still have a constant
probability to guess the same shared coin.

• For crash failures there exists an improved constant expected time algo-
rithm which tolerates f failures with 2f < n.

• For Byzantine failures there exists a constant expected time algorithm
which tolerates f failures with 3f < n.

• Similar algorithms have been proposed for the shared memory model.
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Chapter 7

Shared Objects

7.1 Introduction

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this, we need protocols that allow the nodes of a network to
store and manage access to such a shared object. A simple and obvious solution
is to store the shared object at a central location (see Algorithm 29).

Algorithm 29 Shared Object: Centralized Solution

Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).

Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:

• Algorithm 29 works. Instead of a spanning tree, one can use routing.

• It is however not very efficient. Assume that the object is accessed by
a single node v repeatedly. Then we get a high message/time complex-
ity. Instead v could store the object, or at least cache it. But then, in
case another node w accesses the object, we might run into consistency
problems.

• Alternative idea: The accessing node should become the new master of
the object. The shared object then becomes mobile. There exist several
variants of this idea. The simplest version is a home-based solution like
in Mobile IP (see Algorithm 30).
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Algorithm 30 Shared Object: Home-Based Solution

Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.

Accessing Object: (by node v)
1: v acquires a lock at the home base, receives object.

Remarks:

• Home-based solutions suffer from the triangular routing problem. If two
close-by nodes access the object on a rotating basis, all the traffic is routed
through the potentially far away home-base.

7.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 31. For simplicity,
we assume that a node u only starts a find request if u is not currently the
holder of the shared object and if u has finished all previous find requests (i.e.,
it is not currently waiting to receive the object).

Remarks:

• The parent pointers in Algorithm 31 are only needed for the find operation.
Sending the variable to u in line 13 or to w.successor in line 23 is done
using routing (on the spanning tree or on the underlying network).

• When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node holding
the variable)

• What is really great about the Arrow algorithm is that it works in a
completely asynchronous and concurrent setting (i.e., there can be many
find requests at the same time).

Theorem 7.1. (Arrow, Analysis) In an asynchronous, steady-state, and con-
current setting, a “find” operation terminates with message and time complexity
D, where D is the diameter of the spanning tree.
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Algorithm 31 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 29, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:
1: do atomically
2: u sends “find by u” message to parent node
3: u.parent := u
4: u.wait := true
5: end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7: if w.parent 6= w then
8: w sends “find by u” message to parent
9: w.parent := v

10: else
11: w.parent := v
12: if not w.wait then
13: send variable to u // w holds var. but does not need it any more
14: else
15: w.successor := u // w will send variable to u a.s.a.p.
16: end if
17: end if
18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically
21: w.wait := false
22: if w.successor 6= null then
23: send variable to w.successor
24: w.successor := null
25: end if
26: end do
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Before proving Theorem 7.1, we prove the following lemma.

Lemma 7.2. An edge {u, v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.l.o.g., assume that initially the edge {u, v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1.

Proof of Theorem 7.1. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u, v} for the second time and assume that e is the first edge that is
traversed twice by f . The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to u). This is a contradiction to Lemma 7.2.

Remarks:

• Finding a good tree is an interesting problem. We would like to have a
tree with low stretch, low diameter, low degree, etc.

• It seems that the Arrow algorithm works especially well when lots of “find”
operations are initiated concurrently. Most of them will find a “close-by”
node, thus having low message/time complexity. For the sake of simplicity
we analyze a synchronous system.

Theorem 7.3. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complexity of all “find” operations is O(log |S|·
m∗) where m∗ is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u1 at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u1. A
node u2 that finds (is queued behind) u1 cannot distinguish the system from
a system where there was no request u1, and instead the root was initially
located at u1. The message cost of u2 is consequentially the distance between
u1 and u2 on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst
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case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof.

Remarks:

• An average request set S on a not-to-bad tree gives usually a much better
bound. However, there is an almost tight log |S|/ log log |S| worst-case
example.

• It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In particular
the message complexity of the dynamic analysis can be shown to have a
log D overhead only, where D is the diameter of the spanning tree (note
that for logarithmic trees, the overhead becomes log log n).

• What if the spanning tree is a star? Then with Theorem 7.1, each find will
terminate in 2 steps! Since also an optimal algorithm has message cost 1,
the algorithm is 2-competitive. . . ? Yes, but because of its high degree the
star center experiences contention. . . It can be shown that the contention
overhead is at most proportional to the largest degree ∆ of the spanning
tree.

• Thought experiment: Assume a balanced binary spanning tree—by Theo-
rem 7.1, the message complexity per operation is log n. Because a binary
tree has maximum degree 3, the time per operation therefore is at most
3 log n.

• There are better and worse choices for the spanning tree. The stretch of
an edge {u, v} is defined as distance between u and v in a spanning tree.
The maximum stretch of a spanning tree is the maximum stretch over all
edges. A few years ago, it was shown how to construct spanning trees that
are O(log n)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 32).

Theorem 7.4. Algorithm 32 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
w0, r1, r2, . . . , rk, w1. After w0, the object is stored at w0 and not cached
anywhere else. All reads cost twice the smallest subtree T spanning the write
w0 and all the reads since each read only goes to the first copy. The write w1

costs T plus the path P from w1 to T . Since any data management scheme
must use an edge in T and P at least once, and our algorithm uses edges in T
at most 3 times (and in P at most once), the theorem follows.
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Algorithm 32 Shared Object: Read/Write Caching

• Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).

• Nodes store three items: a parent pointer pointing to one of the neighbors
(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.

• Initially the object is stored at a single node u; all the parent pointers point
towards u, all the cache bits are false.

• When initiating a read, a message follows the arrows (this time: without
inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.

• A write at u writes the new value locally (at node u), then searches (follow the
parent pointers and reverse them towards u) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

• Concurrent reads are not a problem, also multiple concurrent reads and
one write work just fine.

• What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

• Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows the
whole access sequence in advance. It can then cache the object before the
request even appears!

• Algorithms on trees are often simpler, but have the disadvantage that they
introduce the extra stretch factor. In a ring, for example, any tree has
stretch n − 1; so there is always a bad request pattern.
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Algorithm 33 Shared Object: Pointer Forwarding

Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).

Accessing Object: (by node u)
1: follow parent pointers to current root r of T
2: send object from r to u
3: r.parent := u; u.parent := u; // u is the new root

Algorithm 34 Shared Object: Ivy

Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.

Start Find Request at Node u:
1: u sends “find by u” message to parent node
2: u.parent := u

Upon v receiving “Find by u” Message:
3: if v.parent = v then
4: send object to u
5: else
6: send “find by u” message to v.parent
7: end if
8: v.parent := u // u will become the new root

7.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 33.

Remarks:

• If the graph is not complete, routing can be used to find the root.

• Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linearly linked list. Pointer
forwarding is therefore bad in a worst-case.

• If edges are not FIFO, it can even happen that the number of steps is
unbounded for a node having bad luck. An algorithm with such a property
is named “not fair,” or “not wait-free.” (Example: Initially we have the
list 4 → 3 → 2 → 1; 4 starts a find; when the message of 4 passes 3, 3
itself starts a find. The message of 3 may arrive at 2 and then 1 earlier,
thus the new end of the list is 2 → 1 → 3; once the message of 4 passes 2,
the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited
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Figure 7.1: Reversal of the path x0, x1, x2, x3, x4, x5.

during a find message to the new root. The details are given by Algorithm 34.
Figure 7.1 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node x0 on the left tree).

Remarks:

• Also with Algorithm 34, we might have a bad linked list situation. How-
ever, if the start of the list acquires the object, the linked list turns into
a star. As the following theorem will show, the search paths are not long
on average. Since paths sometimes can be bad, we will need amortized
analysis.

Theorem 7.5. If the initial tree is a star, a find request of Algorithm 34 needs
log n steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential Φ of the whole tree
T as (V is the set of all nodes)

Φ(T ) =
∑

u∈V

log s(u)

2
.

Assume that the path traversed by the ith operation has length ki, i.e., the ith

operation redirects ki pointers to the new root. Clearly, the number of steps
of the ith operation is proportional to ki. We are interested in the cost of m
consecutive operations,

∑m
i=1 ki.

Let T0 be the initial tree and let Ti be the tree after the ith operation.
Further, let ai = ki−Φ(Ti−1)+Φ(Ti) be the amortized cost of the ith operation.
We have

m
∑

i=1

ai =

m
∑

i=1

(

ki − Φ(Ti−1) + Φ(Ti)
)

=

m
∑

i=1

ki − Φ(T0) + Φ(Tm).

For any tree T , we have Φ(T ) ≥ log(n)/2. Because we assume that T0 is a star,
we also have Φ(T0) = log(n)/2. We therefore get that

m
∑

i=1

ai ≥
m
∑

i=1

ki.
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Hence, it suffices to upper bound the amortized cost ai of every operation. We
thus analyze the amortized cost ai of the ith operation. Let x0, x1, x2, . . . , xki

be the path that is reversed by the operation. Further for 0 ≤ j ≤ ki, let sj be
the size of the subtree rooted at xj before the reversal. The size of the subtree
rooted at x0 after the reversal is ski

and the size of the one rooted at xj after
the reversal, for 1 ≤ j ≤ ki, is sj − sj−1 (see Figure 7.1). We can thus write ai

as

ai = ki −





ki
∑

j=0

1

2
log sj



+





1

2
log ski

+

ki
∑

j=1

1

2
log(sj − sj−1)





= ki +
1

2
·

ki−1
∑

j=0

(

log(sj+1 − sj) − log sj

)

= ki +
1

2
·

ki−1
∑

j=0

log

(

sj+1 − sj

sj

)

.

For 0 ≤ j ≤ ki −1, let αj = sj+1/sj . Note that sj+1 > sj and thus that αj > 1.
Further note, that (sj+1 − sj)/sj = αj − 1. We therefore have that

ai = ki +
1

2
·

ki−1
∑

j=0

log(αj − 1)

=

ki−1
∑

j=0

(

1 +
1

2
log(αj − 1)

)

.

For α > 1, it can be shown that 1+log(α−1)/2 ≤ log α (see Lemma 7.6). From
this inequality, we obtain

ai ≤
ki−1
∑

j=0

log αj =

ki−1
∑

j=0

log
sj+1

sj
=

ki−1
∑

j=0

(log sj+1 − log sj)

= log ski
− log s0 ≤ log n,

because ski
= n and s0 ≥ 1. This concludes the proof.

Lemma 7.6. For α > 1, 1 + log(α − 1)/2 ≤ log α.

Proof. The claim can be verified by the following chain of reasoning:

0 ≤ (α − 2)2

0 ≤ α2 − 4α + 4

4(α − 1) ≤ α2

log2

(

4(α − 1)
)

≤ log2

(

α2
)

2 + log2(α − 1) ≤ 2 log2 α

1 +
1

2
log2(α − 1) ≤ log2 α.
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Remarks:

• Systems guys (the algorithm is called Ivy because it was used in a system
with the same name) have some fancy heuristics to improve performance
even more: For example, the root every now and then broadcasts its name
such that paths will be shortened.

• What about concurrent requests? It works with the same argument as
in Arrow. Also for Ivy an argument including congestion is missing (and
more pressing, since the dynamic topology of a tree cannot be chosen to
have low degree and thus low congestion as in Arrow).

• Sometimes the type of accesses allows that several accesses can be com-
bined into one to reduce congestion higher up the tree. Let the tree in
Algorithm 29 be a balanced binary tree. If the access to a shared variable
for example is “add value x to the shared variable,” two or more accesses
that accidentally meet at a node can be combined into one. Clearly ac-
cidental meeting is rare in an asynchronous model. We might be able to
use synchronizers (or maybe some other timing tricks) to help meeting a
little bit.



Chapter 8

Synchronizers

So far, we have mainly studied synchronous algorithms because generally, asyn-
chronous algorithms are often more difficult to obtain and it is substantially
harder to reason about asynchronous algorithms than about synchronous ones.
For instance, computing a BFS tree (cf. Chapter 3) efficiently requires much
more work in an asynchronous system. However, many real systems are not
synchronous and we therefore have to design asynchronous algorithms. In this
chapter, we will look at general simulation techniques, called synchronizers, that
allow to run a synchronous algorithm in an asynchronous environment.

8.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 8.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the ith

clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round i of the synchronous algorithm.

Theorem 8.2. If all generated clock pulses are valid according to Definition
8.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the ith pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first i − 1 rounds of the synchronous algorithm.

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 8.1, nodes
have to send additional messages for the purpose of synchronization. The total

71
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complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T (S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Minit(S),
respectively. If T (A) and M(A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ttot

and Mtot of the resulting asynchronous algorithm then become

Ttot = Tinit(S)+T (A)·(1+T (S)) and Mtot = Minit(S)+M(A)+T (A)·M(S),

respectively.

Remarks:

• Because the initialization only needs to be done once for each network, we
will mostly be interested in the overheads T (S) and M(S) per round of
the synchronous algorithm.

Definition 8.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 8.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 8.1 for generating a valid next pulse.

Remarks:

• In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain pulse,
it knows that it is safe with respect to that pulse. Note that sending
acknowledgements does not increase the asymptotic time and message
complexities.

8.2 Synchronizer α

Algorithm 35 Synchronizer α (at node v)

1: wait until v is safe
2: send SAFE to all neighbors
3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer α is very simple. It does not need an initialization. Using ac-
knowledgements, each node eventually detects that it is safe. It then reports this
fact directly to all its neighbors. Whenever a node learns that all its neighbors
are safe, a new pulse is generated. Algorithm 35 formally describes synchronizer
α.
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Theorem 8.5. The time and message complexities of synchronizer α per syn-
chronous round are

T (α) = O(1) and M(α) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer α sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety.

Remarks:

• Synchronizer α was presented in a framework, mostly set up to have a
common standard to discuss different synchronizers. Without the frame-
work, synchronizer α can be explained more easily:

1. Send message to all neighbors, include round information i and actual
data of round i (if any).

2. Wait for message of round i from all neighbors, and go to next round.

• Although synchronizer α allows for simple and fast synchronization, it
produces awfully many messages. Can we do better? Yes.

8.3 Synchronizer β

Algorithm 36 Synchronizer β (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all its children in T
3: if v 6= ℓ then
4: send SAFE message to parent in T
5: wait until PULSE message received from parent in T
6: end if
7: send PULSE message to children in T
8: start new pulse

Synchronizer β needs an initialization that computes a leader node ℓ and a
spanning tree T that is rooted at ℓ. As soon as all nodes are safe, this information
is propagated to ℓ by means of a convergecast. The leader then broadcasts this
information to all nodes. The details of synchronizer β are given in Algorithm
36.

Theorem 8.6. The time and message complexities of synchronizer β per syn-
chronous round are

T (β) = O(diameter(T )) ≤ O(n) and M(β) = O(n).

The time and message complexities for the initialization are

Tinit(β) = O(n) and Minit(β) = O(m + n log n).
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Proof. Because the diameter of T is at most n − 1, the convergecast and the
broadcast together take at most 2n − 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n− 2 synchronization messages (one in each direction
over each edge of T ).

With an improvement (due to Awerbuch) of the GHS algorithm (Algorithm
15) you saw in Chapter 3, it is possible to construct an MST in time O(n)
with O(m+n log n) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages.

Remarks:

• We now got a time-efficient synchronizer (α) and a message-efficient syn-
chronizer (β), it is only natural to ask whether we can have the best of
both worlds. And, indeed, we can. How is that synchronizer called? Quite
obviously: γ .

8.4 Synchronizer γ

Figure 8.1: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer γ can be seen as a combination of synchronizers α and β. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C1 and C2 are called neighboring if there are nodes u ∈ C1 and v ∈ C2 for
which (u, v) ∈ E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 8.1
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.
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Synchronizer γ works in two phases. In a first phase, synchronizer β is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer α between clusters. A detailed
description is given by Algorithm 37.

Algorithm 37 Synchronizer γ (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all children in intracluster tree
3: if v is not cluster leader then
4: send SAFE message to parent in intracluster tree
5: wait until CLUSTERSAFE message received from parent
6: end if
7: send CLUSTERSAFE message to all children in intracluster tree
8: send NEIGHBORSAFE message over all intercluster edges of v
9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-

cluster edges and all children in intracluster tree
10: if v is not cluster leader then
11: send NEIGHBORSAFE message to parent in intracluster tree
12: wait until PULSE message received from parent
13: end if
14: send PULSE message to children in intracluster tree
15: start new pulse

Theorem 8.7. Let mC be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the maximum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer γ are

T (γ) = O(k) and M(γ) = O(n + mC).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n + 2mC = O(n + mC).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =
O(k).
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Algorithm 38 Cluster construction

1: while unprocessed nodes do
2: select an arbitrary unprocessed node v;
3: r := 0;
4: while |B(v, r + 1)| > ρ|B(v, r)| do
5: r := r + 1
6: end while
7: makeCluster(B(v, r)) //all nodes in B(v, r) are now processed
8: end while

Remarks:

• The algorithm allows a trade-off between the cluster diameter k (and thus
the time complexity) and the number of intercluster edges mC (and thus
the message complexity). We will quantify the possibilities in the next
section.

• Two very simple partitions would be to make a cluster out of every single
node or to make one big cluster that contains the whole graph. We then
get synchronizers α and β as special cases of synchronizer γ.

8.5 Network Partition

We will now look at the initialization phase of synchronizer γ. Algorithm
38 describes how to construct a partition into clusters that can be used for
synchronizer γ. In Algorithm 38, B(v, r) denotes the ball of radius r around
v, i.e., B(v, r) = {u ∈ V : d(u, v) ≤ r} where d(u, v) is the distance between
u and v. The algorithm has a parameter ρ > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than ρ.

Theorem 8.8. Algorithm 38 computes a partition of the network graph into
clusters of radius at most logρ n. The number of intercluster edges is at most
(ρ − 1) · n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than ρ. Since there are only n nodes in the graph, this
can happen at most logρ n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C of size |C|. We know that
C = B(v, r) for some v ∈ V and r ≥ 0. Further, we know that |B(v, r + 1)| ≤
ρ · |B(v, r)|. The number of nodes adjacent to cluster C is therefore at most
|B(v, r + 1) \ B(v, r)| ≤ ρ · |C| − |C|. Hence, the number of intercluster edges
adjacent to C is at most (ρ − 1) · |C|. Summing over all clusters, we get that
the total number of intercluster edges is at most (ρ − 1) · n.

Corollary 8.9. Using ρ = 2, Algorithm 38 computes a clustering with cluster
radius at most log2 n and with at most n intercluster edges.
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Corollary 8.10. Using ρ = n1/k, Algorithm 38 computes a clustering with
cluster radius at most k and at most O(n1+1/k) intercluster edges.

Remarks:

• Algorithm 38 describes a centralized construction of the partitioning of
the graph. For ρ ≥ 2, the clustering can be computed by an asynchronous
distributed algorithm in time O(n) with O(m+n log n) messages (showing
this will be part of the exercises).

• It can be shown that the trade-off between cluster radius and number of
intercluster edges of Algorithm 38 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n1+c/k intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer γ.

Corollary 8.11. The time and message complexities of synchronizer γ per
synchronous round are

T (γ) = O(k) and M(γ) = O(n1+1/k).

The time and message complexities for the initialization are

Tinit(γ) = O(n) and Minit(γ) = O(m + n log n).

Remarks:

• The synchronizer idea and the synchronizers discussed in this chapter are
due to Baruch Awerbuch.

• In Chapter 3, you have seen that by using flooding, there is a very simple
synchronous algorithm to compute a BFS tree in time O(D) with mes-
sage complexity O(m). If we use synchronizer γ to make this algorithm
asynchronous, we get an algorithm with time complexity O(n + D log n)
and message complexity O(m+n log n+D ·n) (including the initialization
phase).

• The synchronizers α, β, and γ achieve global synchronization, i.e., ev-
ery node generates every clock pulse. The disadvantage of this is that
nodes that do not participate in a computation also have to participate in
the synchronization. In many computations (e.g. in a BFS construction),
many nodes only participate for a few synchronous rounds. An improved
synchronizer due to Awerbuch and Peleg can exploit such a scenario and
achieves time and message complexity O(log3 n) per synchronous round
(without initialization).

• It can be shown that if all nodes in the network need to generate all pulses,
the trade-off of synchronizer γ is asymptotically optimal.

• Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
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synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as a MIS or a dominating set are based on some kind of
network partitions or covers.



Chapter 9

Stabilization

In Chapter 6 we learned about systems that are fault-tolerant to partial failures.
It was important, however, that a majority of nodes is correct all the time.
Moreover, the set of faulty nodes must not change over time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself ?

9.1 Self-Stabilization

Definition 9.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

• What kind of transient failures can we tolerate? An adversary can crash
nodes, or make nodes behave Byzantine. Indeed, temporarily an adversary
can do harm in even worse ways, e.g. by corrupting the volatile memory
of a node (without the node noticing), or by corrupting messages on the
fly (without anybody noticing). However, as all failures are transient,
eventually all nodes must work correctly again, that is, crashed nodes
get resurrected, Byzantine nodes stop being malicious, messages are being
delivered reliably, and the memory of the nodes is secure.

• Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables in
the volatile random access memory (RAM).

Definition 9.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

79
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Remarks:

• Self-stabilization enables a distributed system to recover from a transient
fault regardless of its nature. A self-stabilizing system does not have to
be initialized as it eventually (after convergence) will behave correctly.

• The self-stabilization property guarantees that the system will end in a
correct state after finite (expected) time. This is in contrast to the fault-
tolerant algorithms of Chapter 6 that guaranteed that the system is always
in a correct state.

• Self-stabilization was introduced in a paper by Edsger W. Dijkstra in 1974,
in the context of a token ring network. A token ring is an early form of
local area network where nodes are arranged in a ring, communicating by
a token. The system is correct if there is exactly one token in the ring.

• Let’s have a look at one of Dijkstra’s simple solutions. Given an oriented
ring, we simply call the clockwise neighbor parent (p), and the counter-
clockwise neighbor child (c). Also, there is a leader node v0. Every node v
is in a state S(v) ∈ {0, 1, . . . , n}, perpetually informing its child about its
state. The token is implicitly passed on by nodes switching state. Upon
noticing a change of the parent state S(p), node v executes the following
code:

Algorithm 39 Self-stabilizing Token Ring

1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if
5: else
6: S(v) := S(p)
7: end if

Theorem 9.3. Algorithm 39 is stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after it is correct (at time t0, however
starting in an arbitrary state).

Every node apart from leader v0 will always attain the state of its parent.
It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time t0. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time t0.

The leader will increase its state possibly multiple times without reaching
stability, however, at some point the leader will reach state s, a state that no
other node had at time t0. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s + 1 (mod n) until every node (including its parent) has s.

After stabilization, there will always be only one node changing its state,
i.e., the system remains in a legitimate state.
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Remarks:

• For his work Dijkstra received the 2002 ACM PODC Influential Paper
Award. Dijkstra passed away shortly after receiving the award. With Di-
jkstra being such an eminent person in distributed computing (e.g. con-
currency, semaphores, mutual exclusion, deadlock, finding shortest paths
in graphs, fault-tolerance, self-stabilization), the award was renamed Eds-
ger W. Dijkstra Prize in Distributed Computing.

• Although one might think the time complexity of the algorithm is quite
bad, it is asymptotically optimal.

• It can be a lot of fun designing self-stabilizing algorithms. Let us try
to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 4):

Algorithm 40 Self-stabilizing MIS

Require: Node IDs
Every node v executes the following code:

1: do atomically
2: Join MIS if no neighbor with larger ID joins MIS
3: Send (node ID, MIS or not MIS) to all neighbors
4: end do

Remarks:

• Note that the main idea of Algorithm 40 is from Algorithm 16, Chapter
4.

• As long as some nodes are faulty, anything can happen: Faulty nodes may
for instance decide to join the MIS, but report to their neighbors that
they did not join the MIS. Similarly messages may be corrupted during
transport. As soon as the system (nodes, messages) is correct, however,
the system will converge to a MIS. (The arguments are the same as in
Chapter 4).

• Self-stabilizing algorithms always run in an infinite loop, because transient
failures can hit the system at any time. Without the infinite loop, an ad-
versary can always corrupt the solution “after” the algorithm terminated.

• The problem is Algorithm 40 is its time complexity, which may be linear
in the number of nodes. This is not very exciting. We need something
better! Since Algorithm 40 was just the self-stabilizing variant of the slow
MIS Algorithm 16, maybe we can hope to “self-stabilize” some of our fast
algorithms from Chapter 4?

• Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy. We
present the general transformation below.
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Theorem 9.4 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k
time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.

Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k phases. In phase i, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node u sends its messages of phase i to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Li

u. (In the very first phase, node
u initializes its local variables with L1

u.) The message sent from node u to node
v in phase i is denoted by mi

u,v. Since the algorithm A is deterministic, node u

can compute its local variables Li
u and messages mi

u,∗ of phase i from its state
of earlier phases, by simply applying functions fL and fm. In particular,

Li
u = fL(u,Li−1

u ,mi−1
∗,u ), for i > 1, and (9.1)

mi
u,v = fm(u, v, Li

u), for i ≥ 1. (9.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L1

u, . . . , Lk
u as well

as all messages received m1
∗,u, . . . ,mk

∗,u in two tables in RAM. For simplicity,

each node u also stores all the sent messages m1
u,∗, . . . ,m

k
u,∗ in a third table. If

a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value ⊥ (“unknown”). Initially, all entries
in the table are ⊥.

Clearly, in the self-stabilizing model, an adversary can choose to change
table values at all times, and even reset these values to ⊥. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each
node u runs these two procedures constantly:

• For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithm A, that is, send the vector (m1

u,v, . . . ,mk
u,v) to

neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (m1

v,u, . . . ,mk
v,u).

• Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
functions 9.1 and 9.2 respectively.

The proof is by induction. Let N i(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has
not corrupted any node in Nk(u) since time t0. At time t0 all nodes in Nk(u)
will check and correct their initialization. Following Equation 9.2, at time t0 all
nodes in Nk(u) will send the correct message entry for the first round (m1

∗,∗) to
all neighbors. Asynchronous messages take at most 1 time unit to be received at



9.1. SELF-STABILIZATION 83

a destination. Hence, using the induction with Equations 9.1 and 9.2 it follows
that at time t0 + i, all nodes in Nk−i(u) have received the correct messages
m1

∗,∗, . . . ,m
i
∗,∗. Consequently, at time t0 + k node u has received all messages

of local algorithm A correctly, and will compute the same result value as in A.
2

Remarks:

• Using our transformation (also known as “local checking”), designing self-
stabilizing algorithms just turned from art to craft.

• As we have seen, many local algorithms are randomized. This brings two
additional problems. Firstly, one may not exactly know how long the
algorithm will take. This is not really a problem since we can simply send
around the all the messages needed, until the algorithm is finished. The
transformation of Theorem 9.4 works also if nodes just send all messages
that are not ⊥. Secondly, we must be careful about the adversary. In
particular we need to restrict the adversary such that a node can produce
a reproducible sufficiently long string of random bits. This can be achieved
by storing the sufficiently long string along with the program code in the
read only memory (ROM). Alternatively, the algorithm might not store
the random bit string in its ROM, but only the seed for a random bit
generator. We need this in order to keep the adversary from reshuffling
random bits until the bits become “bad”, and the expected (or with high
probability) efficacy or efficiency guarantees of the original local algorithm
A cannot be guaranteed anymore.

• Since most local algorithms have only a few communication rounds, and
only exchange small messages, the memory overhead of the transformation
is usually bearable. In addition, information can often be compressed
in a suitable way so that for many algorithms message size will remain
polylogarithmic. For example, the information of the fast MIS algorithm
(Algorithm 18) can be compressed into a series of random values (one
for each round), plus a number and a boolean value. The boolean value
represents whether the node joins the MIS, or whether a neighbor of the
node joins the MIS. The number tells the round that decision is made.
Indeed, the series of random bits can even be compressed just into the
random seed value, and the neighbors can compute the random values of
each round themselves.

• There is hope that our transformation as well gives good algorithms for
mobile networks, that is for networks where the topology of the network
may change. Indeed, for deterministic local approximation algorithms,
this is true: If the adversary does not change the topology of a node’s
k-neighborhood in time k, the solution will locally be stable again.

• For randomized local approximation algorithms however, this is not that
simple. Assume for example, that we have a randomized local algorithm
for the dominating set problem. An adversary can constantly switch the
topology of the network, until it finds a topology for which the random
bits (which are not really random because these random bits are in ROM)
give a solution with a bad approximation ratio. By defining a weaker
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adversarial model, we can fix this problem. Essentially, the adversary
needs to be oblivious, in the sense that it cannot see the solution. Then it
will not be possible for the adversary to restart the random computation
if the solution is “too good”.

• Self-stabilization is the original approach, and self-organization may be the
general theme, but new buzzwords pop up every now and then, e.g. self-
configuration, self-management, self-regulation, self-repairing, self-heal-
ing, self-optimization, self-adaptivity, or self-protection. Generally all
these are summarized as “self-*”. One computing giant coined the term
“autonomic computing” to reflect the trend of self-managing distributed
systems.

9.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.1 In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.2 Is this process going to “stabilize” (in one way or
another)?

Remarks:

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

Theorem 9.5 (Dems & Reps). Eventually every citizen is rooting for the same
party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship between citizens as a pair of (directed) edges, one
in each direction. Let us say an edge is currently “bad” if the party of the
advising friend differs from the next-day’s party of the advised friend. In other
words, the edge is bad if the advisor was in the minority. An edge that is not
bad, is “good”.

Consider the out-edges of citizen c on day t, during which (say) c roots for
the Democrats. Assume that during day t, g out-edges of c are good, and b
out-edges are bad. Note that g + b is the degree of c. Since g out-edges were
good, g friends of c root for the Democrats on day t+1. Likewise, b friends of c
root for the Republicans on day t+1. In other words, on the evening of day t+1

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.

2Assume for the sake of simplicity that everybody has an odd number of friends.
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citizen c will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

• g > b: In this case, citizen c will still (or again) root for the Democrats on
day t + 2. Note that in this case, on day t + 1, exactly g in-edges of c are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t + 1.

• g < b: In this case, citizen c will root for the Republicans on day t + 2.
Note that in this case, on day t + 1, exactly b in-edges of c are good, and
exactly g in-edges are bad. In other words, the number of bad out-edges
on day t was exactly the number of good in-edges on day t + 1 (and vice
versa). Since citizen c is rooting for the Republicans, the number of bad
out-edges on day t was strictly larger than the number of bad in-edges on
day t + 1.

Every edge is an out-edge on day t, and an in-edge on day t + 1. Since in both
cases the number of bad edges do not increase, the total number of bad edges
B cannot increase. In fact, if any node switches its party from day t to t + 2,
we know that the total number of bad edges strictly decreases. But B cannot
decrease forever. Once B hits it minimum, the system stabilizes in the sense
that every citizen will either stick with his or her party forever or flip-flop every
day – the system “stabilizes”. 2

Remarks:

• The model can be generalized considerably by, for example, adding weights
to vertices (meaning some citizens’ opinions are more important than
others), allowing loops (citizens who consider their own current opinions
as well), allowing tie-breaking mechanisms, and even allowing different
thresholds for party changes.

• How long does it takes until the system stabilizes?

• Some of you may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors. In each
round, the following transitions occur: Any live cell with fewer than two
live neighbors dies, as if caused by lonelyness. Any live cell with more
than three live neighbors dies, as if by overcrowding. Any live cell with
two or three live neighbors lives on to the next generation. Any dead cell
with exactly three live neighbors is “born” and becomes a live cell. The
initial pattern constitutes the “seed” of the system. The first generation
is created by applying the above rules simultaneously to every cell in the
seed, births and deaths happen simultaneously, and the discrete moment
at which this happens is sometimes called a tick. (In other words, each
generation is a pure function of the one before.) The rules continue to
be applied repeatedly to create further generations. John Conway figured
that these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such Life
in some sense answers an old question by John von Neumann, whether
there can be a simple machine that can build copies of itself. In fact Life
is Turing complete, that is, as powerful as any computer.
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Figure 9.1: A “glider gun”. . .

Figure 9.2: . . . in action.



Chapter 10

All-to-All Communication

In the previous chapters, we have mostly considered communication on a par-
ticular graph G = (V,E), where any two nodes u and v can only communicate
directly if {u, v} ∈ E. This is however not always the best way to model a net-
work. In the Internet, for example, every machine (node) is able to “directly”
communicate with every other machine via a series of routers. If every node in
a network can communicate directly with all other nodes, many problems can
be solved easily. For example, assume we have n servers, each hosting an ar-
bitrary number of (numeric) elements. If all servers are interested in obtaining
the maximum of all elements, all servers can simultaneously, i.e., in one com-
munication round, send their local maximum element to all other servers. Once
these maxima are received, each server knows the global maximum.

Note that we can again use graph theory to model this all-to-all commu-
nication scenario: The communication graph is simply the complete graph
Kn := (V,

(

V
2

)

). If each node can send its entire local state in a single message,
then all problems could be solved in 1 communication round in this model!
Since allowing unbounded messages is not realistic in most practical scenarios,
we restrict the message size: Assuming that all node identifiers and all other
variables in the system (such as the numeric elements in the example above)
can be described using O(log n) bits, each node can only send a message of size
O(log n) bits to all other nodes. In other words, only a constant number of
identifiers (and elements) can be packed into a single message. Thus, in this
model, the limiting factor is the amount of information that can be transmitted
in a fixed amount of time. This is fundamentally different from the model we
studied before where nodes are restricted to local information about the network
graph.

In this chapter, we study one particular problem in this model, the com-
putation of a minimum spanning tree (MST), i.e., we will again look at the
construction of a basic network structure. Let us first review the definition of a
minimum spanning tree from Chapter 3. We assume that each edge e is assigned
a weight ωe.

Definition 10.1 (MST). Given a weighted graph G = (V,E, ω). The MST
of G is a spanning tree T minimizing ω(T ), where ω(H) =

∑

e∈H ωe for any
subgraph H ⊆ G.
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Remarks:

• Since we have a complete communication graph, the graph has
(

n
2

)

edges
in the beginning.

• As in Chapter 3, we assume that no two edges of the graph have the same
weight. Recall that assumption ensures that the MST is unique. Recall
also that this simplification is not essential as one can always break ties
by using the IDs of adjacent vertices.

For simplicity, we assume that we have a synchronous model (as we are
only interested in the time complexity, our algorithm can be made asynchro-
nous using synchronizer α at no additional cost (cf. Chapter 8). As usual, in
every round, every node can send a (potentially different) message to each of
its neighbors. In particular, note that the message delay is 1 for every edge e
independent of the weight ωe. As mentioned before, every message can contain
a constant number of node IDs and edge weights (and O(log n) additional bits).

There is a considerable amount of work on distributed MST construction.
Table 10.1 lists the most important results for various network diameters D.
As we have a complete communication network in our model, we focus only on
D = 1.

Upper Bounds

Graph Class Time Complexity Authors
General Graphs O(D +

√
n · log∗ n) Kutten, Peleg

Diameter 2 O(log n) Lotker, Patt-Shamir,
Peleg

Diameter 1 O(log log n) Lotker, Patt-Shamir,
Pavlov, Peleg

Lower Bounds

Graph Class Time Complexity Authors
Diameter Ω(log n) Ω(D +

√
n/ log2 n) Peleg, Rubinovich

Diameter 4 Ω(n1/3/
√

log n) Lotker, Patt-Shamir,
Peleg

Diameter 3 Ω(n1/4/
√

log n) Lotker, Patt-Shamir,
Peleg

Table 10.1: Time complexity of distributed MST construction

Remarks:

• Note that for graphs of arbitrary diameter D, if there are no bounds on the
number of messages sent, on the message size, and on the amount of local
computations, there is a straightforward generic algorithm to compute an
MST in time D: In every round, every node sends its complete state to all
its neighbors. After D rounds, every node knows the whole graph and can
compute any graph structure locally without any further communication.
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• In general, the diameter D is also an obvious lower bound for the time
needed to compute an MST. In a weighted ring, e.g., it takes time D to
find the heaviest edge. In fact, on the ring, time D is required to compute
any spanning tree.

In this chapter, we are not concerned with lower bounds, we want to give an
algorithm that computes the MST as quickly as possible instead! We again use
the following lemma that is proven in Chapter 3.

Lemma 10.2. For a given graph G let T be an MST, and let T ′ ⊆ T be a
subgraph (also known as a fragment) of the MST. Edge e = (u, v) is an outgoing
edge of T ′ if u ∈ T ′ and v 6∈ T ′ (or vice versa). Let the minimum weight outgoing
edge of the fragment T ′ be the so-called blue edge b(T ′). Then T ′ ∪ b(T ′) ⊆ T .

Lemma 10.2 leads to a straightforward distributed MST algorithm. We start
with an empty graph, i.e., every node is a fragment of the MST. The algorithm
consists of phases. In every phase, we add the blue edge b(T ′) of every existing
fragment T ′ to the MST. Algorithm 41 shows how the described simple MST
construction can be carried out in a network of diameter 1.

Algorithm 41 Simple MST Construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: while v has neighbor u in different fragment do
3: find lowest-weight edge e between v and a node u in a different fragment
4: send e to all nodes
5: determine blue edges of all fragments
6: add blue edges of all fragments to MST, update fragments
7: end while

Theorem 10.3. On a complete graph, Algorithm 41 computes an MST in time
O(log n).

Proof. The algorithm is correct because of Lemma 10.2. Every node only needs
to send a single message to all its neighbors in every phase (line 4). All other
computations can be done locally without sending other messages. In particular,
the blue edge of a given fragment is the lightest edge sent by any node of that
fragment. Because every node always knows the current MST (and all current
fragments), lines 5 and 6 can be performed locally.

In every phase, every fragment connects to at least one other fragment. The
minimum fragment size therefore at least doubles in every phase. Thus, the
number of phases is at most log2 n.

Remarks:

• Algorithm 41 does essentially the same thing as the GHS algorithm (Algo-
rithm 15) discussed in Chapter 3. Because we now have a complete graph
and thus every node can communicate with every other node, things be-
come simpler (and also much faster).

• Algorithm 41 does not make use of the fact that a node can send different
messages to different nodes. Making use of this possibility will allow us to
significantly reduce the running time of the algorithm.
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Our goal is now to improve Algorithm 41. We assume that every node has
a unique identifier. By sending its own identifier to all other nodes, every node
knows the identifiers of all other nodes after one round. Let ℓ(F ) be the node
with the smallest identifier in fragment F . We call ℓ(F ) the leader of fragment
F . In order to improve the running time of Algorithm 41, we need to be able
to connect every fragment to more than one other fragment in a single phase.
Algorithm 42 shows how the nodes can learn about the k = |F | lightest outgoing
edges of each fragment F (in constant time!).

Algorithm 42 Fast MST construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: repeat
3: F := fragment of v;
4: ∀F ′ 6= F , compute min-weight edge eF ′ connecting v to F ′

5: ∀F ′ 6= F , send eF ′ to ℓ(F ′)
6: if v = ℓ(F ) then
7: ∀F ′ 6= F , determine min-weight edge eF,F ′ between F and F ′

8: k := |F |
9: E(F ) := k lightest edges among eF,F ′ for F ′ 6= F

10: send edges in E(F ) to different nodes in F
// for simplicity assume that v also sends an edge to itself

11: end if
12: send edge received from ℓ(F ) to all nodes
13: // the following operations are performed locally by each node
14: E′ := edges received by other nodes
15: AddEdges(E′)
16: until all nodes are in the same fragment

Given this set E′ of edges, each node can locally decide which edges can
safely be added to the constructed tree by calling the subroutine AddEdges
(Algorithm 43). Note that the set of received edges E′ in line 14 is the same for
all nodes. Since all nodes know all current fragments, all nodes add the same
set of edges!

Algorithm 43 uses the lightest outgoing edge that connects two fragments (to
a larger super-fragment) as long as it is safe to add this edge, i.e., as long as it is
clear that this edge is a blue edge. A (super-)fragment that has outgoing edges
in E′ that are surely blue edges is called safe. As we will see, a super-fragment
F is safe if all the original fragments that make up F are still incident to at least
one edge in E′ that has not yet been considered. In order to determine whether
all lightest outgoing edges in E′ that are incident to a certain fragment F have
been processed, a counter c(F ) is maintained (see line 2). If an edge incident
to two (distinct) fragments Fi and Fj is processed, both c(Fi) and c(Fj) are
decremented by 1 (see Line 8).

An edge connecting two distinct super-fragments F ′ and F ′′ is added if at
least one of the two super-fragments is safe. In this case, the two super-fragments
are merged into one (new) super-fragment. The new super-fragment is safe if
and only if both original super-fragements are safe and the processed edge e is
not the last edge in E′ incident to any of the two fragments Fi and Fj that are
incident to e, i.e., both counters c(Fi) and c(Fj) are still positive (see line 12).
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The considered edge e may not be added for one of two reasons. It is possible
that both F ′ and F ′′ are not safe. Since a super-fragment cannot become safe
again, nothing has to be done in this case. The second reason is that F ′ = F ′′.
In this case, this single fragment may become unsafe if e reduced either c(Fi)
or c(Fj) to zero (see line 18).

Algorithm 43 AddEdges(E′): Given the set of edges E′, determine which
edges are added to the MST

1: Let F1, . . . , Fr be the initial fragments
2: ∀Fi ∈ {F1, . . . , Fr}, c(Fi) := # incident edges in E′

3: Let F1 := F1, . . . ,Fr := Fr be the initial super-fragments
4: ∀Fi ∈ {F1, . . . ,Fr}, safe(Fi) := true
5: while E′ 6= ∅ do
6: e := lightest edge in E′ between the original fragments Fi and Fj

7: E′ := E′ \ {e}
8: c(Fi) := c(Fi) − 1, c(Fj) := c(Fj) − 1
9: if e connects super-fragments F ′ 6= F ′′ and (safe(F ′) or safe(F ′′)) then

10: add e to MST
11: merge F ′ and F ′′ into one super-fragment Fnew

12: if safe(F ′) and safe(F ′′) and c(Fi) > 0 and c(Fj) > 0 then
13: safe(Fnew) := true
14: else
15: safe(Fnew) := false
16: end if
17: else if F ′ = F ′′ and (c(Fi) = 0 or c(Fj) = 0) then
18: safe(F ′) := false
19: end if
20: end while

Lemma 10.4. The algorithm only adds MST edges.

Proof. We have to prove that at the time we add an edge e in line 9 of Al-
gorithm 43, e is the blue edge of some (super-)fragment. By definition, e is
the lightest edge that has not been considered and that connects two distinct
super-fragments F ′ and F ′′. Since e is added, we know that either safe(F ′)
or safe(F ′′) is true. Without loss of generality, assume that F ′ is safe. Ac-
cording to the definition of safe, this means that from each fragment F in the
super-fragment F ′ we know at least the lightest outgoing edge, which implies
that we also know the lightest outgoing edge, i.e., the blue edge, of F ′. Since e
is the lightest edge that connects any two super-fragments, it must hold that e
is exactly the blue edge of F ′. Thus, whenever an edge is added, it is an MST
edge.

Theorem 10.5. Algorithm 42 computes an MST in time O(log log n).

Proof. Let βk denote the size of the smallest fragment after phase k of Algo-
rithm 42. We first show that every fragment merges with at least βk other
fragments in each phase. Since the size of each fragment after phase k is at
least βk by definition, we get that the size of each fragment after phase k + 1 is
at least βk(βk + 1). Assume that a fragment F , consisting of at least βk nodes,
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does not merge with βk other fragments in phase k + 1 for any k ≥ 0. Note
that F cannot be safe because being safe implies that there is at least one edge
in E′ that has not been considered yet and that is the blue edge of F . Hence,
the phase cannot be completed in this case. On the other hand, if F is not
safe, then at least one of its sub-fragments has used up all its βk edges to other
fragments. However, such an edge is either used to merge two fragments or it
must have been dropped because the two fragments already belong to the same
fragment because another edge connected them (in the same phase). In either
case, we get that any fragment, and in particular F , must merge with at least
βk other fragments.

Given that the minimum fragment size grows (quickly) in each phase and
that only edges belonging to the MST are added according to Lemma 10.4, we
conclude that the algorithm correctly computes the MST. The fact that

βk+1 ≥ βk(βk + 1)

implies that βk ≥ 22k−1

for any k ≥ 1. Therefore after 1+log2 log2 n phases, the
minimum fragment size is n and thus all nodes are in the same fragment.

Remarks:

• It is not known whether the O(log log n) time complexity of Algorithm 42
is optimal. In fact, no lower bounds are known for the MST construction
on graphs of diameter 1 and 2.

• Algorithm 42 makes use of the fact that it is possible to send different
messages to different nodes. If we assume that every node always has to
send the same message to all other nodes, Algorithm 41 is the best that
is known. Also for this simpler case, no lower bound is known.



Chapter 11

Distributed Sorting

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

– Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting—
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 11.1 (Sorting). We are given a graph with n nodes v1, . . . , vn. Ini-
tially each node stores a value. After applying a sorting algorithm, node vk

stores the kth smallest value.

Remarks:

• What if we route all values to the same central node v, let v sort the values
locally, and then route them to the correct destinations?! According to the
message passing model studied in the first few chapters this is perfectly
legal. With a star topology sorting finishes in O(1) time!

• Indeed, if we allow the All-to-All model of Chapter 10 we can even sort
n values in a single round! So we need to make sure that we restrict our
model appropriately:

Definition 11.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

• Using Definition 11.2 sorting on a star graph takes linear time.

93
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Algorithm 44 Odd/Even Sort

1: Given an array of n nodes (v1, . . . , vn), each storing a value (not sorted).
2: repeat
3: Compare and exchange the values at nodes i and i + 1, i odd
4: Compare and exchange the values at nodes i and i + 1, i even
5: until done

11.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:

Remarks:

• The compare and exchange primitive in Algorithm 44 is defined as follows:
Let the value stored at node i be vi. After the compare and exchange node
i stores value min(vi, vi+1) and node i + 1 stores value max(vi, vi+1).

• How fast is the algorithm, and how can we prove correctness/efficiency?

• The most interesting proof uses the so-called 0-1 Sorting Lemma. It allows
us to restrict our attention to an input of 0’s and 1’s only, and works for any
“oblivious comparison-exchange” algorithm. (Oblivious means: Whether
you exchange two values must only depend on the relative order of the
two values, and not on anything else.)

Lemma 11.3 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts any input.

Proof. We prove the opposite direction (does not sort any input ⇒ does not sort
0’s and 1’s). Assume that there is an input x = x1, . . . , xn that is not sorted
correctly. Then there is a smallest value k such that the value at node vk after
running the sorting algorithm is larger than the kth smallest value x(k). Define
an input x∗

i = 0 ⇔ xi ≤ x(k), x∗
i = 1 else. Since xi ≥ xj ⇒ x∗

i ≥ x∗
j all the

compare-exchange operation are the same with x∗ as with the original input x.
The output with only 0’s and 1’s will also not be correct.

Theorem 11.4. Algorithm 44 sorts correctly in n steps.

Proof. Thanks to Lemma 11.3 we only need to consider an array with 0’s and
1’s. Let j1 be the node with the rightmost (highest index) 1. If j1 is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node vn. Let jk be the node with
the kth rightmost 1. We show by induction that jk is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at k = 1. Since jk−1 moves after step k − 1, jk gets a
right 0-neighbor for each step after step k. (For simplicity we omitted a couple
of simple details.)
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Algorithm 45 Shearsort

1: We are given a mesh with m rows and m columns, m even, n = m2.
2: The sorting algorithm operates in phases, and uses the odd/even sort algo-

rithm on rows or columns.
3: repeat
4: In the odd phases 1, 3, . . . we sort all the rows, in the even phases 2, 4, . . .

we sort all the columns, such that:
5: Columns are sorted such that the small values move up.
6: Odd rows (1, 3, . . . ,m − 1) are sorted such that small values move left.
7: Even rows (2, 4, . . . ,m) are sorted such that small values move right.
8: until done

Remarks:

• Linear time is not very exciting, maybe we can do better by using a dif-
ferent topology? Let’s try a mesh (a.k.a. grid) topology first.

Theorem 11.5. Algorithm 45 sorts n values in
√

n(log n+1) time in snake-like
order.

Proof. Since the algorithm is oblivious, we can use Lemma 11.3. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 . . . 11111

11111 . . . 00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0| = |1|”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have Lemma 11.3!).

All in all we need 2 log m = log n phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort.
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Remarks:

• There are algorithms that sort in 3m + o(m) time on an m by m mesh
(by diving the mesh into smaller blocks). This is asymptotically optimal,
since a value might need to move 2m times.

• Such a
√

n-sorter is cute, but we are more ambitious. There are non-
distributed sorting algorithms such as quicksort, heapsort, or mergesort
that sort n values in (expected) O(n log n) time. Using our n-fold paral-
lelism effectively we might therefore hope for a distributed sorting algo-
rithm that sorts in time O(log n)!

11.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation to previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for her application.

Definition 11.6 (Sorting Networks). A comparator is a device with two in-
puts x, y and two outputs x′, y′ such that x′ = min(x, y) and y′ = max(x, y).
We construct so-called comparison networks that consist of wires that connect
comparators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to output comparators, and some
are not connected to input comparators. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires.

Remarks:

• The odd/even sorter explained in Algorithm 44 can be described as a
sorting network.

• Often we will draw all the wires on n horizontal lines (n being the “width”
of the network). Comparators are then vertically connecting two of these
lines.

• Note that a sorting network is an oblivious comparison-exchange network.
Consequently we can apply Lemma 11.3 throughout this section. An ex-
ample sorting network is depicted in Figure 11.1.

Definition 11.7 (Depth). The depth of an input wire is 0. The depth of a
comparator is the maximum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the maximum depth (of an output wire).

Definition 11.8 (Bitonic Sequence). A bitonic sequence is a sequence of num-
bers that first monotonically increases, and then monotonically decreases, or
vice versa.
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Figure 11.1: A sorting network.

Remarks:

• < 1, 4, 6, 8, 3, 2 > or < 5, 3, 2, 1, 4, 8 > are bitonic sequences.

• < 9, 6, 2, 3, 5, 4 > or < 7, 4, 2, 5, 9, 8 > are not bitonic.

• Since we restrict ourselves to 0’s and 1’s (Lemma 11.3), bitonic sequences
have the form 0i1j0k or 1i0j1k for i, j, k ≥ 0.

Algorithm 46 Half Cleaner

1: A half cleaner is a comparison network of depth 1, where we compare wire
i with wire i + n/2 for i = 1, . . . , n/2 (we assume n to be even).

Lemma 11.9. Feeding a bitonic sequence into a half cleaner (Algorithm 46),
the half cleaner cleans (makes all-0 or all-1) either the upper or the lower half
of the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0i1j0k for i, j, k ≥ 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of Theorem 11.5. The case 1i0j1k is symmetric.

Algorithm 47 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n/2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 11.10. A bitonic sequence sorter (Algorithm 47) of width n sorts
bitonic sequences. It has depth log n.
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Proof. The proof follows directly from the Algorithm 47 and Lemma 11.9.

Remarks:

• Clearly we want to sort arbitrary and not only bitonic sequences! To do
this we need one more concept, merging networks.

Algorithm 48 Merging Network

1: A merging network of width n is a merger followed by two bitonic sequence
sorters of width n/2. A merger is a depth-one network where we compare
wire i with wire n − i + 1, for i = 1, . . . , n/2.

Remarks:

• Note that a merging network is a bitonic sequence sorter where we replace
the (first) half-cleaner by a merger.

Lemma 11.11. A merging network (Algorithm 48) merges two sorted input
sequences into one.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use same argument as in
Theorem 11.5 and Lemma 11.9: Again, after the merger step either the upper
or the lower half is clean, the other is bitonic. The bitonic sequence sorters
complete sorting.

Remarks:

• How do you sort n values when you are able to merge two sorted sequences
of size n/2? Piece of cake, just apply the merger recursively.

Algorithm 49 Batcher’s “Bitonic” Sorting Network

1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See Figure
11.2.)

2: A batcher sorting network of width 1 is empty.

Theorem 11.12. A sorting network (Algorithm 49)sorts an arbitrary sequence
of n values. It has depth O(log2 n).

Proof. Correctness is immediate: at recursive stage k (k = 2, 4, 8, . . . , n) we
merge n/(2k) sorted sequences into n/k sorted sequences. The depth d(n) of
the sorter of level n is the depth of a sorter of level n/2 plus the depth m(n)
of a merger with width n. The depth of a sorter of level 1 is 0 since the sorter
is empty. Since a merger of width n has the same depth as a bitonic sequence
sorter of width n, we know by Lemma 11.10 that m(n) = log n. This gives a
recursive formula for d(n) which solves to d(n) = 1

2 log2 n + 1
2 log n.
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Figure 11.2: A batcher sorting network

Remarks:

• Simulating Batcher’s sorting network on an ordinary sequential computer
takes time O(n log2 n). As said, there are sequential sorting algorithms
that sort in asymptotically optimal time O(n log n). So a natural question
is whether there is a sorting network with depth O(log n). Such a network
would have some remarkable advantages over sequential asymptotically
optimal sorting algorithms such as heapsort. Apart from being highly
parallel, it would be completely oblivious, and as such perfectly suited for
a fast hardware solution. In 1983, Ajtai, Komlos, and Szemeredi presented
a celebrated O(log n) depth sorting network. (Unlike Batcher’s sorting
network the constant hidden in the big-O of the “AKS” sorting network
is too large to be practical, however.)

• It can be shown that Batcher’s sorting network and similarly others can
be simulated by a Butterfly network and other hypercubic networks, see
next Chapter.

• What if a sorting network is asynchronous?!? Clearly, using a synchronizer
we can still sort, but it is also possible to use it for something else. Check
out the next section!

11.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 11.13 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-
and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.
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Remarks:

• A naive distributed counter stores the system’s counter value with a dis-
tinguished central node. When other nodes initiate the test-and-increment
operation, they send a request message to the central node and in turn
receive a reply message with the current counter value. However, with a
large number of nodes operating on the distributed counter, the central
processor will become a bottleneck. There will be a congestion of request
messages at the central processor, in other words, the system will not
scale.

• Is a scalable implementation (without any kind of bottleneck) of such a
distributed counter possible, or is distributed counting a problem which
is inherently centralized?!?

• Distributed counting could for instance be used to implement a load bal-
ancing infrastructure, i.e. by sending the job with counter value i (modulo
n) to server i (out of n possible servers).

Definition 11.14 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 50 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.
3: The message is then routed through the network, following the rules of the

asynchronous balancers.
4: Each output wire is completed with a “mini-counter.”
5: The mini-counter of wire k replies the value “k + i · w” to the initiator of

the ith message it receives.

Definition 11.15 (Step Property). A sequence y0, y1, . . . , yw−1 is said to have
the step property, if 0 ≤ yi − yj ≤ 1, for any i < j.

Remarks:

• If the output wires have the step property, then with r requests, exactly
the values 1, . . . , r will be assigned by the mini-counters. All we need to
show is that the counting network has the step property. For that we need
some additional facts...

Facts 11.16. For a balancer, we denote the number of consumed messages
on the ith input wire with xi, i = 0, 1. Similarly, we denote the number of
sent messages on the ith output wire with yi, i = 0, 1. A balancer has these
properties:

(1) A balancer does not generate output-messages; that is, x0 + x1 ≥ y0 + y1

in any state.
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(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then x0 + x1 = y0 + y1.

(3) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any
state y0 = ⌈(y0 + y1)/2⌉ (thus y1 = ⌊(y0 + y1)/2⌋).

Facts 11.17. If a sequence y0, y1, . . . , yw−1 has the step property,

(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2−1
∑

i=0

y2i =

⌈

1

2

w−1
∑

i=0

yi

⌉

and

w/2−1
∑

i=0

y2i+1 =

⌊

1

2

w−1
∑

i=0

yi

⌋

.

Facts 11.18. If two sequences x0, x1, . . . , xw−1 and y0, y1, . . . , yw−1 have the
step property,

(1) and
∑w−1

i=0 xi =
∑w−1

i=0 yi, then xi = yi for i = 0, . . . , w − 1.

(2) and
∑w−1

i=0 xi =
∑w−1

i=0 yi+1, then there exists a unique j (j = 0, 1, . . . , w−
1) such that xj = yj + 1, and xi = yi for i = 0, . . . , w − 1, i 6= j.

Remarks:

• That’s enough to prove that a Merger preserves the step property.

Lemma 11.19. Let M [w] be a Merger of width w. In a quiescent state (no mes-
sage in transit), if the inputs x0, x1, . . . , xw/2−1 resp. xw/2, xw/2+1, . . . , xw−1

have the step property, then the output y0, y1, . . . , yw−1 has the step property.

Proof. By induction on the width w.
For w = 2: M [2] is a balancer and a balancer’s output has the step property

(Fact 11.16.3).
For w > 2: Let z0, . . . , zw/2−1 resp. z′0, . . . , z

′
w/2−1 be the output of the

upper respectively lower M [w/2] subnetwork. Since x0, x1, . . . , xw/2−1 and
xw/2, xw/2+1, . . . , xw−1 both have the step property by assumption, their even
and odd subsequences also have the step property (Fact 11.17.1). By induction
hypothesis, the output of both M [w/2] subnetworks have the step property.

Let Z :=
∑w/2−1

i=0 zi and Z ′ :=
∑w/2−1

i=0 z′i. From Fact 11.17.2 we conclude that

Z = ⌈ 1
2

∑w/2−1
i=0 xi⌉ + ⌊ 1

2

∑w−1
i=w/2 xi⌋ and Z ′ = ⌊ 1

2

∑w/2−1
i=0 xi⌋ + ⌈ 1

2

∑w−1
i=w/2 xi⌉.

Since ⌈a⌉ + ⌊b⌋ and ⌊a⌋ + ⌈b⌉ differ by at most 1 we know that Z and Z ′ differ
by at most 1.

If Z = Z ′, Fact 11.18.1 implies that zi = z′i for i = 0, . . . , w/2−1. Therefore,
the output of M [w] is yi = z⌊i/2⌋ for i = 0, . . . , w − 1. Since z0, . . . , zw/2−1 has
the step property, so does the output of M [w] and the Lemma follows.

If Z and Z ′ differ by 1, Fact 11.18.2 implies that zi = z′i for i = 0, . . . , w/2−1,
except a unique j such that zj and z′j differ by only 1, for j = 0, . . . , w/2 − 1.
Let l := min(zj , z

′
j). Then, the output yi (with i < 2j) is l + 1. The output

yi (with i > 2j + 1) is l. The output y2j and y2j+1 are balanced by the final
balancer resulting in y2j = l + 1 and y2j+1 = l. Therefore M [w] preserves the
step property.



102 Counting Networks

A bitonic counting network is constructed to fulfill Lemma 11.19, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following Theorem follows immediately.

Theorem 11.20 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

• Is every sorting networks also a counting network? No. But surprisingly,
the other direction is true!

Theorem 11.21 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s ith

input wire if and only if I(C)’s i input wire is 0. Since C is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C) will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through I(C)
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying Lemma 11.3 shows that I(C) is a sorting
network.

Remarks:

• We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 11.22 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
formally, if there is a pair of operations o1, o2, where operation o1 terminates be-
fore operation o2 starts, and the logical order is “o2 before o1”, then a distributed
system is not linearizable.

Lemma 11.23 (Linearizability). The bitonic counting network is not lineariz-
able.

Proof. Consider the bitonic counting network with width 4 in Figure 11.3: As-
sume that two inc operations were initiated and the corresponding messages
entered the network on wire 0 and 2 (both in light gray color). After hav-
ing passed the second resp. the first balancer, these traversing messages “fall
asleep”; In other words, both messages take unusually long time before they are
received by the next balancer. Since we are in an asynchronous setting, this
may be the case.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.
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Figure 11.3: Linearizability Counter Example.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in figure 11.3), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 11.22, the bitonic counting network is not linearizable.

Remarks:

• Note that the example in Figure 11.3 behaves correctly in the quiescent
state: Finally, exactly the values 0, 1, 2, 3 are allotted.

• It was shown that linearizability comes at a high price (the depth grows
linearly with the width).
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Chapter 12

Peer-to-Peer Computing

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of [sorting and] searching!”

– Donald E. Knuth, The Art of Computer Programming

12.1 Introduction

Unfortunately, the term peer-to-peer (P2P) is ambiguous, used in a variety of
different contexts, such as:

• In popular media coverage, P2P is often synonymous to software or proto-
cols that allow users to “share” files, often of dubious origin. In the early
days, P2P users mostly shared music, pictures, and software; nowadays
books, movies or tv shows have caught on. P2P file sharing is immensely
popular, currently at least half of the total Internet traffic is due to P2P!

• In academia, the term P2P is used mostly in two ways. A narrow view
essentially defines P2P as the “theory behind file sharing protocols”. In
other words, how do Internet hosts need to be organized in order to deliver
a search engine to find (file sharing) content efficiently? A popular term
is “distributed hash table” (DHT), a distributed data structure that im-
plements such a content search engine. A DHT should support at least a
search (for a key) and an insert (key, object) operation. A DHT has many
applications beyond file sharing, e.g., the Internet domain name system
(DNS).

• A broader view generalizes P2P beyond file sharing: Indeed, there is a
growing number of applications operating outside the juridical gray area,
e.g., P2P Internet telephony à la Skype, P2P mass player games on video
consoles connected to the Internet, P2P live video streaming as in Zattoo
or StreamForge, or P2P social storage such as Wuala. So, again, what is
P2P?! Still not an easy question... Trying to account for the new applica-
tions beyond file sharing, one might define P2P as a large-scale distributed
system that operates without a central server bottleneck. However, with
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this definition almost everything we learn in this course is P2P! More-
over, according to this definition early-day file sharing applications such
as Napster (1999) that essentially made the term P2P popular would not
be P2P! On the other hand, the plain old telephone system or the world
wide web do fit the P2P definition...

• From a different viewpoint, the term P2P may also be synonymous for
privacy protection, as various P2P systems such as Freenet allow publish-
ers of information to remain anonymous and uncensored. (Studies show
that these freedom-of-speech P2P networks do not feature a lot of content
against oppressive governments; indeed the majority of text documents
seem to be about illicit drugs, not to speak about the type of content in
audio or video files.)

In other words, we cannot hope for a single well-fitting definition of P2P, as
some of them even contradict. In the following we mostly employ the academic
viewpoints (second and third definition above). In this context, it is generally
believed that P2P will have an influence on the future of the Internet. The P2P
paradigm promises to give better scalability, availability, reliability, fairness,
incentives, privacy, and security, just about everything researchers expect from
a future Internet architecture. As such it is not surprising that new “clean slate”
Internet architecture proposals often revolve around P2P concepts.

One might naively assume that for instance scalability is not an issue in
today’s Internet, as even most popular web pages are generally highly available.
However, this is not really because of our well-designed Internet architecture,
but rather due to the help of so-called overlay networks: The Google website for
instance manages to respond so reliably and quickly because Google maintains a
large distributed infrastructure, essentially a P2P system. Similarly companies
like Akamai sell “P2P functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly today’s P2P applications
are just testbeds for tomorrow’s Internet architecture.

12.2 Architecture Variants

Several P2P architectures are known:

• Client/Server goes P2P: Even though Napster is known to the be first P2P
system (1999), by today’s standards its architecture would not deserve the
label P2P anymore. Napster clients accessed a central server that managed
all the information of the shared files, i.e., which file was to be found on
which client. Only the downloading process itself was between clients
(“peers”) directly, hence peer-to-peer. In the early days of Napster the
load of the server was relatively small, so the simple Napster architecture
made a lot of sense. Later on, it became clear that the server would
eventually be a bottleneck, and more so an attractive target for an attack.
Indeed, eventually a judge ruled the server to be shut down, in other
words, he conducted a juridical denial of service attack.

• Unstructured P2P: The Gnutella protocol is the anti-thesis of Napster,
as it is a fully decentralized system, with no single entity having a global
picture. Instead each peer would connect to a random sample of other
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peers, constantly changing the neighbors of this virtual overlay network
by exchanging neighbors with neighbors of neighbors. (In such a system
it is part of the challenge to find a decentralized way to even discover a
first neighbor; this is known as the bootstrap problem. To solve it, usu-
ally some random peers of a list of well-known peers are contacted first.)
When searching for a file, the request was being flooded in the network
(Algorithm 11 in Chapter 3). Indeed, since users often turn off their client
once they downloaded their content there usually is a lot of churn (peers
joining and leaving at high rates) in a P2P system, so selecting the right
“random” neighbors is an interesting research problem by itself. However,
unstructured P2P architectures such as Gnutella have a major disadvan-
tage, namely that each search will cost m messages, m being the number
of virtual edges in the architecture. In other words, such an unstructured
P2P architecture will not scale.

• Hybrid P2P: The synthesis of client/server architectures such as Napster
and unstructured architectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called superpeers (or, similarly,
trackers). The set of superpeers may change over time, and taking down
a fraction of superpeers will not harm the system. Search requests are
handled on the superpeer level, resulting in much less messages than in
flat/homogeneous unstructured systems. Essentially the superpeers to-
gether provide a more fault-tolerant version of the Napster server, all
regular peers connect to a superpeer. As of today, almost all popular
P2P systems have such a hybrid architecture, carefully trading off relia-
bility and efficiency, but essentially not using any fancy algorithms and
techniques.

• Structured P2P: Inspired by the early success of Napster, the academic
world started to look into the question of efficient file sharing. Indeed,
even earlier, in 1997, Plaxton, Rajaraman, and Richa proposed a hy-
percubic architecture for P2P systems. This was a blueprint for many
so-called structured P2P architecture proposals, such as Chord, CAN,
Pastry, Tapestry, Viceroy, Kademlia, Koorde, SkipGraph, SkipNet, etc.
In practice structured P2P architectures are not yet popular, apart from
the Kad (from Kademlia) architecture which comes for free with the eMule
client. Indeed, also the Plaxton et al. paper was standing on the shoulders
of giants. Some of its eminent precursors are:

– Research on linear and consistent hashing, e.g., the paper “Consistent
hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web” by Karger et al. (co-authored
also by the late Daniel Lewin from Akamai), 1997.

– Research on locating shared objects, e.g., the papers “Sparse Parti-
tions” (see also Chapter 8) or “Concurrent Online Tracking of Mobile
Users” by Awerbuch and Peleg, 1990 and 1991.

– Work on so-called compact routing: The idea is to construct routing
tables such that there is a trade-off between memory (size of routing
tables) and stretch (quality of routes), e.g., “A trade-off between
space and efficiency for routing tables” by Peleg and Upfal, 1988.
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– . . . and even earlier: hypercubic networks, see next section!

12.3 Hypercubic Networks

(Thanks to Christian Scheideler, TUM, for the pictures in this section.)

In this section we will introduce some popular families of network topolo-
gies. These topologies are used in countless application domains, e.g., in classic
parallel computers or telecommunication networks, or more recently (as said
above) in P2P computing. Similarly to Chapter 11 we employ the All-to-All
communication model of Chapter 10, i.e., each node can set up direct communi-
cation links to arbitrary other nodes. Such a virtual network is called an overlay
network, or in this context, P2P architecture. In this section we present a few
overlay topologies of general interest.

The most basic network topologies used in practice are trees, rings, grids or
tori. Many other suggested networks are simply combinations or derivatives of
these. The advantage of trees is that the routing is very easy: for every source-
destination pair there is only one possible simple path. However, since the root
of a tree is usually a severe bottleneck, so-called fat trees have been used. These
trees have the property that every edge connecting a node v to its parent u has
a capacity that is equal to all leaves of the subtree routed at v. See Figure 12.1
for an example.

2

1

4

Figure 12.1: The structure of a fat tree.

Remarks:

• Fat trees belong to a family of networks that require edges of non-uniform
capacity to be efficient. Easier to build are networks with edges of uniform
capacity. This is usually the case for grids and tori. Unless explicitly
mentioned, we will treat all edges in the following to be of capacity 1. In
the following, [x] means the set {0, . . . , x − 1}.

Definition 12.1 (Torus, Mesh). Let m, d ∈ N. The (m, d)-mesh M(m, d) is a
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graph with node set V = [m]d and edge set

E =

{

{(a1, . . . , ad), (b1, . . . , bd)} | ai, bi ∈ [m],
d
∑

i=1

|ai − bi| = 1

}

.

The (m, d)-torus T (m, d) is a graph that consists of an (m, d)-mesh and addi-
tionally wrap-around edges from nodes (a1, . . . , ai−1,m, ai+1, . . . , ad) to nodes
(a1, . . . , ai−1, 1, ai+1, . . . , ad) for all i ∈ {1, . . . , d} and all aj ∈ [m] with j 6= i.
In other words, we take the expression ai−bi in the sum modulo m prior to com-
puting the absolute value. M(m, 1) is also called a line, T (m, 1) a cycle, and
M(2, d) = T (2, d) a d-dimensional hypercube. Figure 12.2 presents a linear
array, a torus, and a hypercube.
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Figure 12.2: The structure of M(m, 1), T (4, 2), and M(2, 3).

Remarks:

• Routing on mesh, torus, and hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring d one only
needs to fix each “wrong” bit, one at a time; in other words, if the source
and the target differ by k bits, there are k! routes with k hops.

• The hypercube can directly be used for a structured P2P architecture. It
is trivial to construct a distributed hash table (DHT): We have n nodes,
n for simplicity being a power of 2, i.e., n = 2d. As in the hypercube, each
node gets a unique d-bit ID, and each node connects to d other nodes,
i.e., the nodes that have IDs differing in exactly one bit. Now we use a
globally known hash function f , mapping file names to long bit strings;
SHA-1 is popular in practice, providing 160 bits. Let fd denote the first d
bits (prefix) of the bitstring produced by f . If a node is searching for file
name X, it routes a request message f(X) to node fd(X). Clearly, node
fd(X) can only answer this request if all files with hash prefix fd(X) have
been previously registered at node fd(X).

• There are a few issues which need to be addressed before our DHT works,
in particular churn (nodes joining and leaving without notice). To deal
with churn the system needs some level of replication, i.e., a number of
nodes which are responsible for each prefix such that failure of some nodes
will not compromise the system. We give some more details in Section
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12.4. In addition there are other issues (e.g., security, efficiency) which
can be addressed to improve the system. Delay efficiency for instance is
already considered in the seminal paper by Plaxton et al. These issues are
beyond the scope of this lecture.

• The hypercube has many derivatives, the so-called hypercubic networks.
Among these are the butterfly, cube-connected-cycles, shuffle-exchange,
and de Bruijn graph. We start with the butterfly, which is basically a
“rolled out” hypercube (hence directly providing replication!).

Definition 12.2 (Butterfly). Let d ∈ N . The d-dimensional butterfly BF (d)
is a graph with node set V = [d + 1] × [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2]d}
and

E2 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2]d, α and β differ

only at the ith position} .

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and identifying level d with level 0.

Remarks:

• Figure 12.3 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+1)2d nodes, 2d · 2d edges and degree 4. It is not difficult to check that
combining the node sets {(i, α) | i ∈ [d]} into a single node results in the
hypercube.

• Butterflies have the advantage of a constant node degree over hypercubes,
whereas hypercubes feature more fault-tolerant routing.

• The structure of a butterfly might remind you of sorting networks from
Chapter 11. Although butterflies are used in the P2P context (e.g.
Viceroy), they have been used decades earlier for communication switches.
The well-known Benes network is nothing but two back-to-back butter-
flies. And indeed, butterflies (and other hypercubic networks) are even
older than that; students familiar with fast fourier transform (FFT) will
recognize the structure without doubt. Every year there is a new applica-
tion for which a hypercubic network is the perfect solution!

• Indeed, hypercubic networks are related. Since all structured P2P archi-
tectures are based on hypercubic networks, they in turn are all related.

• Next we define the cube-connected-cycles network. It only has a degree
of 3 and it results from the hypercube by replacing the corners by cycles.

Definition 12.3 (Cube-Connected-Cycles). Let d ∈ N . The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈ [2]d, p ∈ [d]}
and edge set

E =
{

{(a, p), (a, (p + 1)mod d)} | a ∈ [2]d, p ∈ [d]
}

∪
{

{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except for ap

}

.
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Figure 12.3: The structure of BF(3).
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Figure 12.4: The structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 12.4.

• The shuffle-exchange is yet another way of transforming the hypercubic
interconnection structure into a constant degree network.

Definition 12.4 (Shuffle-Exchange). Let d ∈ N . The d-dimensional shuffle-
exchange SE(d) is defined as an undirected graph with node set V = [2]d and
an edge set E = E1 ∪ E2 with

E1 = {{(a1, . . . , ad), (a1, . . . , ād)} | (a1, . . . , ad) ∈ [2]d, ād = 1 − ad}

and
E2 = {{(a1, . . . , ad), (ad, a1, . . . , ad−1)} | (a1, . . . , ad) ∈ [2]d} .

Figure 12.5 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 12.5 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b, d) is an undirected graph G = (V,E) with node set V = {v ∈ [b]d}
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Figure 12.5: The structure of SE(3) and SE(4).

and edge set E that contains all edges {v, w} with the property that w ∈
{(x, v1, . . . , vd−1) : x ∈ [b]}, where v = (v1, . . . , vd).

010

100

001

110

1111100

01

000
101

011

10

Figure 12.6: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 12.6. The
DeBruijn graph is the basis of the Koorde P2P architecture.

• There are some data structures which also qualify as hypercubic networks.
An obvious example is the Chord P2P architecture, which uses a slightly
different hypercubic topology. A less obvious (and therefore good) exam-
ple is the skip list, the balanced binary search tree for the lazy programmer:

Definition 12.6 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

• Search, insert, and delete can be implemented in O(log n) expected time
in a skip list, simply by jumping from higher levels to lower ones when
overshooting the searched position. Also, the amortized memory cost of
each object is constant, as on average an object only has two forward
pointers.
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• The randomization can easily be discarded, by deterministically promoting
a constant fraction of objects of level i to level i + 1, for all i. When
inserting or deleting, object o simply checks whether its left and right
level i neighbors are being promoted to level i + 1. If none of them is,
promote object o itself. Essentially we establish a MIS on each level, hence
at least every third and at most every second object is promoted.

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always promote
all the nodes, similarly to a balanced binary tree: All nodes are part of
the root level of the binary tree. Half the nodes are promoted left, and
half the nodes are promoted right, on each level. Hence on level i we have
have 2i lists (or, more symmetrically: rings) of about n/2i objects. This
is pretty much what we need for a nice hypercubic P2P architecture.

• One important goal in choosing a topology for a network is that it has a
small diameter. The following theorem presents a lower bound for this.

Theorem 12.7. Every graph of maximum degree d > 2 and size n must have
a diameter of at least ⌈(log n)/(log(d − 1))⌉ − 2.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most k steps at most

1 +

k−1
∑

i=0

d · (d − 1)i = 1 + d · (d − 1)k − 1

(d − 1) − 1
≤ d · (d − 1)k

d − 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within k steps. Hence,

(d − 1)k ≥ (d − 2) · n
d

⇔ k ≥ logd−1((d − 2) · n/d) .

Since logd−1((d − 2)/d) > −2 for all d > 2, this is true only if k ≥
⌈(log n)/(log(d − 1))⌉ − 2.

Remarks:

• In other words, constant-degree hypercubic networks feature an asymp-
totically optimal diameter.

• There are a few other interesting graph classes, e.g., expander graphs (an
expander graph is a sparse graph which has high connectivity properties,
that is, from every not too large subset of nodes you are connected to
a larger set of nodes), or small-world graphs (popular representations of
social networks). At first sight hypercubic networks seem to be related to
expanders and small-world graphs, but they are not.
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12.4 DHT & Churn

As written earlier, a DHT essentially is a hypercubic structure with nodes having
identifiers such that they span the ID space of the objects to be stored. We
described the straightforward way how the ID space is mapped onto the peers
for the hypercube. Other hypercubic structures may be more complicated: The
butterfly network, for instance, may directly use the d+1 layers for replication,
i.e., all the d + 1 nodes with the same ID are responsible for the same hash
prefix. For other hypercubic networks, e.g., the pancake graph (see exercises),
assigning the object space to peer nodes may be more difficult.

In general a DHT has to withstand churn. Usually, peers are under control of
individual users who turn their machines on or off at any time. Such peers join
and leave the P2P system at high rates (“churn”), a problem that is not existent
in orthodox distributed systems, hence P2P systems fundamentally differ from
old-school distributed systems where it is assumed that the nodes in the system
are relatively stable. In traditional distributed systems a single unavailable
node is a minor disaster: all the other nodes have to get a consistent view of the
system again, essentially they have to reach consensus which nodes are available.
In a P2P system there is usually so much churn that it is impossible to have a
consistent view at any time.

Most P2P systems in the literature are analyzed against an adversary that
can crash a fraction of random peers. After crashing a few peers the system
is given sufficient time to recover again. However, this seems unrealistic. The
scheme sketched in this section significantly differs from this in two major as-
pects. First, we assume that joins and leaves occur in a worst-case manner. We
think of an adversary that can remove and add a bounded number of peers; it
can choose which peers to crash and how peers join. We assume that a joining
peer knows a peer which already belongs to the system. Second, the adversary
does not have to wait until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly crash peers, while the sys-
tem is trying to stay alive. Indeed, the system is never fully repaired but always
fully functional. In particular, the system is resilient against an adversary that
continuously attacks the “weakest part” of the system. The adversary could for
example insert a crawler into the P2P system, learn the topology of the system,
and then repeatedly crash selected peers, in an attempt to partition the P2P
network. The system counters such an adversary by continuously moving the
remaining or newly joining peers towards the sparse areas.

Clearly, we cannot allow the adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. The algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers, i.e., the
synchronous model. Using the trivial synchronizer this is not a problem. We
only need bounded message delays in order to have a notion of time which is
needed for the adversarial model. The duration of a round is then proportional
to the propagation delay of the slowest message.

In the remainder of this section, we give a sketch of the system: For sim-
plicity, the basic structure of the P2P system is a hypercube. Each peer is part
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of a distinct hypercube node; each hypercube node consists of Θ(log n) peers.
Peers have connections to other peers of their hypercube node and to peers of
the neighboring hypercube nodes.1 Because of churn, some of the peers have to
change to another hypercube node such that up to constant factors, all hyper-
cube nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the dimension of the
hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem on the hypercube. Each node of the hypercube has a
certain number of tokens, the goal is to distribute the tokens along the edges of
the graph such that all nodes end up with the same or almost the same number
of tokens. While tokens are moved around, an adversary constantly inserts and
deletes tokens. See also Figure 12.7.

Figure 12.7: A simulated 2-dimensional hypercube with four nodes, each con-
sisting of several peers. Also, all the peers are either in the core or in the
periphery of a node. All peers within the same node are completely connected
to each other, and additionally, all peers of a node are connected to the core
peers of the neighboring nodes. Only the core peers store data items, while the
peripheral peers move between the nodes to balance biased adversarial changes.

In summary, the P2P system builds on two basic components: i) an algo-
rithm which performs the described dynamic token distribution and ii) an in-
formation aggregation algorithm which is used to estimate the number of peers
in the system and to adapt the dimension of the hypercube accordingly:

Theorem 12.8 (DHT with Churn). We have a fully scalable, efficient P2P
system which tolerates O(log n) worst-case joins and/or crashes per constant
time interval. As in other P2P systems, peers have O(log n) neighbors, and the
usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a P2P
system work. Later studies proposed more elaborate architectures which
can also handle other security issues, e.g., privacy or Byzantine attacks.

1Having a logarithmic number of hypercube neighbor nodes, each with a logarithmic num-
ber of peers, means that each peers has Θ(log2

n) neighbor peers. However, with some addi-
tional bells and whistles one can achieve Θ(log n) neighbor peers.



116 CHAPTER 12. PEER-TO-PEER COMPUTING

• It is surprising that unstructured (in fact, hybrid) P2P systems dominate
structured P2P systems in the real world. One would think that structured
P2P systems have advantages, in particular their efficient logarithmic data
lookup. On the other hand, unstructured P2P networks are simpler, in
particular in light of non-exact queries.



Chapter 13

Multi-Core Computing

This chapter is based on the article“Distributed Computing and the Multicore
Revolution” by Maurice Herlihy and Victor Luchangco. Thanks!

13.1 Introduction

In the near future, nearly all computers, ranging from supercomputers to cell
phones, will be multiprocessors. It is harder and harder to increase processor
clock speed (the chips overheat), but easier and easier to cram more processor
cores onto a chip (thanks to Moore’s Law). As a result, uniprocessors are giving
way to dual-cores, dual-cores to quad-cores, and so on.

However, there is a problem: Except for “embarrassingly parallel” applica-
tions, no one really knows how to exploit lots of cores.

13.1.1 The Current State of Concurrent Programming

In today’s programming practice, programmers typically rely on combinations
of locks and conditions, such as monitors, to prevent concurrent access by differ-
ent threads to the same shared data. While this approach allows programmers
to treat sections of code as “atomic”, and thus simplifies reasoning about inter-
actions, it suffers from a number of severe shortcomings.

• Programmers must decide between coarse-grained locking, in which a large
data structure is protected by a single lock (usually implemented using
operations such as test-and-set or compare and swap(CAS)), and fine-
grained locking, in which a lock is associated with each component of
the data structure. Coarse-grained locking is simple, but permits little or
no concurrency, thereby preventing the program from exploiting multiple
processing cores. By contrast, fine-grained locking is substantially more
complicated because of the need to ensure that threads acquire all nec-
essary locks (and only those, for good performance), and because of the
need to avoid deadlocks, when acquiring multiple locks. The decision is
further complicated by the fact that the best engineering solution may be

117
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Algorithm Move(Element e, Table from, Table to)

1: if from.find(e) then
2: to.insert(e)
3: from.delete(e)
4: end if

platform-dependent, varying with different machine sizes, workloads, and
so on, making it difficult to write code that is both scalable and portable.

• Conventional locking provides poor support for code composition and
reuse. For example, consider a lock-based hash table that provides atomic
insert and delete methods. Ideally, it should be easy to move an ele-
ment atomically from one table to another, but this kind of composition
simply does not work. If the table methods synchronize internally, then
there is no way to acquire and hold both locks simultaneously. If the ta-
bles export their locks, then modularity and safety are compromised. For
a concrete example, assume we have two hash tables T1 and T2 storing
integers and using internal locks only. Every number is only inserted into
a table, if it is not already present, i.e., multiple occurrences are not per-
mitted. We want to atomically move elements using two threads between
the tables using Algorithm Move. If we have external locks, we must pay
attention to avoid deadlocks etc.

Table T1 is contains 1 and T2 is empty
Time Thread 1 Thread 2

Move(1,T1,T2) Move(1,T2,T1)
1 T1.find(1) delayed
2 T2.insert(1)
3 delayed T2.find(1)
4 T1.insert(1)
5 T1.delete(1) T2.delete(1)

both T1 and T2 are empty

• Such basic issues as the mapping from locks to data, that is, which locks
protect which data, and the order in which locks must be acquired and
released, are all based on convention, and violations are notoriously diffi-
cult to detect and debug. For these and other reasons, today’s software
practices make lock-based concurrent programs (too) difficult to develop,
debug, understand, and maintain.

The research community has addressed this issue for more than fifteen
years by developing nonblocking algorithms for stacks, queues and other
data structures. These algorithms are subtle and difficult. For example,
the pseudo code of a delete operation for a (non-blocking) linked list,
recently presented at a conference, contains more than 30 lines of code,
whereas a delete procedure for a (non-concurrent, used only by one thread)
linked list can be written with 5 lines of code.
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13.2 Transactional Memory

Recently the transactional memory programming paradigm has gained mo-
mentum as an alternative to locks in concurrent programming. Rather than
using locks to give the illusion of atomicity by preventing concurrent access
to shared data with transactional memory, programmers designate regions of
code as transactions, and the system guarantees that such code appears to exe-
cute atomically. A transaction that cannot complete is aborted—its effects are
discarded—and may be retried. Transactions have been used to build large,
complex and reliable database systems for over thirty years; with transactional
memory, researchers hope to translate that success to multiprocessor systems.
The underlying system may use locks or nonblocking algorithms to implement
transactions, but the complexity is hidden from the application programmer.
Proposals exist for implementing transactional memory in hardware, in soft-
ware, and in schemes that mix hardware and software. This area is growing at
a fast pace.

More formally, a transaction is defined as follows:

Definition 13.1. A transaction in transactional memory is characterized by
three properties (ACI):

• Atomicity: Either a transaction finishes all its operations or no operation
has an effect on the system.

• Consistency: All objects are in a valid state before and after the transac-
tion.

• Isolation: Other transactions cannot access or see data in an intermediate
(possibly invalid) state of any parallel running transaction.

Remarks:

• For database transactions there exists a fourth property called durability:
If a transaction has completed, its changes are permanent, i.e., even if the
system crashes, the changes can be recovered. In principle, it would be
feasible to demand the same thing for transactional memory, however this
would mean that we had to use slow hard discs instead of fast DRAM
chips...

• Although transactional memory is a promising approach for concurrent
programming, it is not a panacea, and in any case, transactional programs
will need to interact with other (legacy) code, which may use locks or other
means to control concurrency.

• One major challenge for the adoption of transactional memory is that
it has no universally accepted specification. It is not clear yet how to
interact with I/O and system calls should be dealt with. For instance,
imagine you print a news article. The printer job is part of a transaction.
After printing half the page, the transaction gets aborted. Thus the work
(printing) is lost. Clearly, this behavior is not acceptable.

• From a theory perspective we also face a number of open problems. For
example:
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– System model: An abstract model for a (shared-memory) multipro-
cessor is needed that properly accounts for performance. In the 80s,
the PRAM model became a standard model for parallel computation,
and the research community developed many elegant parallel algo-
rithms for this model. Unfortunately, PRAM assume that processors
are synchronous, and that memory can be accessed only by read and
write operations. Modern computer architectures are asynchronous
and they provide additional operations such as test-and-set. Also,
PRAM did not model the effects of contention nor the performance
implications of multilevel caching, assuming instead a flat memory
with uniform-cost access. More realistic models have been proposed
to account for the costs of interprocess communication, but these
models still assume synchronous processors with only read and write
access to memory.

– How to resolve conflicts? Many transactional memory implemen-
tations “optimistically” execute transactions in parallel. Conflicts
between two transactions intending to modify the same memory at
the same time are resolved by a contention manager. A contention
manager decides whether a transaction continues, waits or is aborted.
The contention management policy of a transactional memory imple-
mentation can have a profound effect on its performance, and even
its progress guarantees.

13.3 Contention Management

After the previous introduction of transactional memory, we look at different
aspects of contention management from a theoretical perspective. We start with
a description of the model.

We are given a set of transactions S := {T1, ..., Tn} sharing up to s resources
(such as memory cells) that are executed on n threads. Each thread runs on a
separate processor/core P1, ..., Pn. For simplicity, each transaction T consists
of a sequence of tT operations. An operation requires one time unit and can
be a write access of a resource R or some arbitrary computation.1 To perform
a write, the written resource must be acquired exclusively (i.e., locked) before
the access. Additionally, a transaction must store the original value of a written
resource. Only one transaction can lock a resource at a time. If a transaction
A attempts to acquire a resource, locked by B, then A and B face a conflict.
If multiple transactions concurrently attempt to acquire an unlocked resource,
an arbitrary transaction A will get the resource and the others face a conflict
with A. A contention manager decides how to resolve a conflict. Contention
managers operate in a distributed fashion, that is to say, a separate instance of a
contention manager is available for every thread and they operate independently.
Contention managers can make a transaction wait (arbitrarily long) or abort.
An aborted transaction undoes all its changes to resources and frees all locks
before restarting. Freeing locks and undoing the changes can be done with one
operation. A successful transaction finishes with a commit and simply frees

1Reads are of course also possible, but are not critical because they do not attempt to
modify data.
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all locks. A contention manager is unaware of (potential) future conflicts of a
transaction. The required resources might also change at any time.

The quality of a contention manager is characterized by different properties:

• Throughput: How long does it take until all transactions have committed?
How good is our algorithm compared to an optimal?

Definition 13.2. The makespan of the set S of transactions is the time
interval from the start of the first transaction until all transactions have
committed.

Definition 13.3. The competitive ratio is the ratio of the makespans of
the algorithm to analyze and an optimal algorithm.

• Progress guarantees: Is the system deadlock-free? Does every transaction
commit in finite time?

Definition 13.4. We look at three levels of progress guarantees:

– wait freedom (strongest guarantee): all threads make progress in a
finite number of steps

– lock freedom: one thread makes progress in a finite number of steps

– obstruction freedom (weakest): one thread makes progress in a finite
number of steps in absence of contention (no other threads compete
for the same resources)

Remarks:

• For the analysis we assume an oblivious adversary. It knows the algorithm
to analyze and chooses/modifies the operations of transactions arbitrarily.
However, the adversary does not know the random choices (of a random-
ized algorithm). The optimal algorithm knows all decisions of the adver-
sary, i.e., first the adversary must say how all transactions look like and
then the optimal algorithm, having full knowledge of all transactions and
all malicious acts of the adversary, computes an (optimal) schedule.

• Wait freedom implies lock freedom. Lock freedom implies obstruction
freedom.

• Here is an example to illustrate how needed resources change over time:
Consider a dynamic data structure such as a balanced tree. If a transaction
attempts to insert an element, it must modify a (parent) node and maybe
it also has to do some rotations to rebalance the tree. Depending on the
elements of the tree, which change over time, it might modify different
objects. For a concrete example, assume that the root node of a binary
tree has value 4 and the root has a (left) child of value 2. If a transaction
A inserts value 5, it must modify the pointer to the right child of the root
node with value 4. Thus it locks the root node. If A gets aborted by a
transaction B, which deletes the node with value 4 and commits, it will
attempt to lock the new root node with value 2 after its restart.



122 CHAPTER 13. MULTI-CORE COMPUTING

• There are also systems, where resources are not locked exclusively. All
we need is a correct serialization (analogous to transactions in database
systems). Thus a transaction might speculatively use the current value
of a resource, modified by an uncommitted transaction. However, these
systems must track dependencies to ensure the ACI properties of a trans-
action (see Definition 13.1). For instance, assume a transaction T1 incre-
ments variable x from 1 to 2. Then transaction T2 might access x and
assume its correct value is 2. If T1 commits everything is fine and the
ACI properties are ensured, but if T1 aborts, T2 must abort too, since
otherwise the atomicity property was violated.

• In practice, the number of concurrent transactions might be much larger
than the number of processors. However, performance may decrease with
an increasing number of threads since there is time wasted to switch be-
tween threads. Thus, in practice, load adaption schemes have been sug-
gested to limit the number of concurrent transactions close to (or even
below) the number of cores.

• In the analysis, we will assume that the number of operations is fixed for
each transaction. However, the execution time of a transaction (in the
absence of contention) might also change, e.g., if data structures shrink,
less elements have to be considered. Nevertheless, often the changes are
not substantial, i.e., only involve a constant factor. Furthermore, if an
adversary can modify the duration of a transaction arbitrarily during the
execution of a transaction, then any algorithm must make the exact same
choices as an optimal algorithm: Assume two transactions T0 and T1 face
a conflict and an algorithm Alg decides to let T0 wait (or abort). The
adversary could make the opposite decision and let T0 proceed such that
it commits at time t0. Then it sets the execution time T0 to infinity, i.e.,
tT0

= ∞ after t0. Thus, the makespan of the schedule for algorithm Alg is
unbounded though there exists a schedule with bounded makespan. Hence
the competitive ratio is unbounded.

Problem complexity

In graph theory, coloring a graph with as few colors as possible is known to be
hard problem. A (vertex) coloring assigns a color to each vertex of a graph such
that no two adjacent vertices share the same color. It was shown that computing
an optimal coloring given complete knowledge of the graph is NP-hard. Even
worse, computing an approximation within a factor of χ(G)log χ(G)/25, where
χ(G) is the minimal number of colors needed to color the graph, is NP-hard as
well.

To keep things simple, we assume for the following theorem that resource
acquisition takes no time, i.e., as long as there are no conflicts, transactions get
all locks they wish for at once. In this case, there is an immediate connection to
graph coloring, showing that even an offline version of contention management,
where all potential conflicts are known and do not change over time, is extremely
hard to solve.

Theorem 13.5. If the optimal schedule has makespan k and resource acquisi-
tion takes zero time, it is NP-hard to compute a schedule of makespan less than
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klog k/25, even if all conflicts are known and transactions do not change their
resource requirements.

Proof. We will prove the claim by showing that any algorithm finding a schedule
taking k′ < k(log k)/25 can be utilized to approximate the chromatic number of

any graph better than χ(G)
log χ(G)

25 .

Given the graph G = (V,E), define that V is the set of transactions and
E is the set of resources. Each transaction (node) v ∈ V needs to acquire a
lock on all its resources (edges) {v, w} ∈ E, and then computes something for
exactly one round. Obviously, this “translation” of a graph into our scheduling
problem does not require any computation at all.

Now, if we knew a χ(G)-coloring of G, we could simply use the fact that the
nodes sharing one color form an independent set and execute all transactions
of a single color in parallel and the colors sequentially. Since no two neighbors
are in an independent set and resources are edges, all conflicts are resolved.
Consequently, the makespan k is at most χ(G).

On the other hand, the makespan k must be at least χ(G): Since each trans-
action (i.e., node) locks all required resources (i.e., adjacent edges) for at least
one round, no schedule could do better than serve a (maximum) independent
set in parallel while all other transactions wait. However, by definition of the
chromatic number χ(G), V cannot be split into less than χ(G) independent sets,
meaning that k ≥ χ(G). Therefore k = χ(G).

In other words, if we could compute a schedule using k′ < k(log k)/25 rounds
in polynomial time, we knew that

χ(G) = k ≤ k′ < k(log k)/25 = χ(G)(log χ(G))/25.

Remarks:

• The theorem holds for a central contention manager, knowing all trans-
actions and all potential conflicts. Clearly, the online problem, where
conflicts remain unknown until they occur, is even harder. Furthermore,
the distributed nature of contention managers also makes the problem
even more difficult.

• If resource acquisition does not take zero time, the connection between the
problems is not a direct equivalence. However, the same proof technique
shows that it is NP-hard to compute a polynomial approximation, i.e.,
k′ ≤ kc for some constant c ≥ 1.

Deterministic contention managers

Theorem 13.5 showed that even if all conflicts are known, one cannot produce
schedules which makespan get close to the optimal without a lot of computation.
However, we target to construct contention managers that make their decisions
quickly without knowing conflicts in advance. Let us look at a couple of con-
tention managers and investigate their throughput and progress guarantees.
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• A first naive contention manger: Be aggressive! Always abort the trans-
action having locked the resource. Analysis: The throughput might be
zero, since a livelock is possible. But the system is still obstruction free.
Consider two transactions consisting of three operations. The first opera-
tion of both is a write to the same resource R. If they start concurrently,
they will abort each other infinitely often.

• A smarter contention manager: Approximate the work done. Assume
before a start (also before a restart after an abort) a transaction gets
a unique timestamp. The older transaction, which is believed to have
already performed more work, should win the conflict.

Analysis: Clearly, the oldest transaction will always run until commit
without interruption. Thus we have lock-freedom, since at least one trans-
action makes progress at any time. In other words, at least one processor
is always busy executing a transaction until its commit. Thus, the bound
says that all transactions are executed sequentially. How about the com-
petitive ratio? We have s resources and n transactions starting at the
same time. For simplicity, assume every transaction Ti needs to lock at
least one resource for a constant fraction c of its execution time tTi

. Thus,
at most s transactions can run concurrently from start until commit with-
out (possibly) facing a conflict (if s+1 transactions run at the same time,
at least two of them lock the same resource). Thus, the makespan of an

optimal contention manager is at least:
∑n

i=0
c·tTi

s . The makespan of our
timestamping algorithm is at most the duration of a sequential execution,
i.e. the sum of the lengths of all transactions:

∑n
i=0 tTi

. The competitive
ratio is:

∑n
i=0 tTi

∑n
i=0

c·tTi

s

=
s

c
= O(s).

Remarks:

– Unfortunately, in most relevant cases the number of resources is larger
than the number of cores, i.e., s > n. Thus, our timestamping al-
gorithm only guarantees sequential execution, whereas the optimal
might execute all transactions in parallel.

Are there contention managers that guarantee more than sequential execu-
tion, if a lot of parallelism is possible? If we have a powerful adversary, that can
change the required resources after an abort, the analysis is tight. Though we
restrict to deterministic algorithms here, the theorem also holds for randomized
contention managers.

Theorem 13.6. Suppose n transactions start at the same time and the adver-
sary is allowed to alter the resource requirement of any transaction (only) after
an abort, then the competitive ratio of any deterministic contention manager is
Ω(n).

Proof. Assume we have n resources. Suppose all transactions consist of two
operations, such that conflicts arise, which force the contention manager to
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abort one of the two transactions T2i−1, T2i for every i < n/2. More precisely,
transaction T2i−1 writes to resource R2i−1 and to R2i afterwards. Transaction
T2i writes to resource R2i and to R2i−1 afterwards. Clearly, any contention
manager has to abort n/2 transactions. Now the adversary tells each transaction
which did not finish to adjust its resource requirements and write to resource
R0 as their first operation. Thus, for any deterministic contention manager the
n/2 aborted transactions must execute sequentially and the makespan of the
algorithm becomes Ω(n).

The optimal strategy first schedules all transactions that were aborted and in
turn aborts the others. Since the now aborted transactions do not change their
resource requirements, they can be scheduled in parallel. Hence the optimal
makespan is 4, yielding a competitive ratio of Ω(n).

Remarks:

• The prove can be generalized to show that the ratio is Ω(s) if s resources
are present, matching the previous upper bound.

• But what if the adversary is not so powerful, i.e., a transaction has a fixed
set of needed resources?

The analysis of algorithm timestamp is still tight. Consider the dining
philosophers problem: Suppose all transactions have length n and trans-
action i requires its first resource Ri at time 1 and its second Ri+1 (except
Tn, which only needs Rn) at time n− i. Thus, each transaction Ti poten-
tially conflicts with transaction Ti−1 and transaction Ti+1. Let transaction
i have the ith oldest timestamp. At time n− i transaction i+1 with i ≥ 1
will get aborted by transaction i and only transaction 1 will commit at
time n. After every abort transaction i restarts 1 time unit before trans-
action i−1. Since transaction i−1 acquires its second resource i−1 time
units before its termination, transaction i − 1 will abort transaction i at
least i − 1 times. After i − 1 aborts transaction i may commit. The total
time until the algorithm is done is bounded by the time transaction n stays
in the system, i.e., at least

∑n
i=1(n − i) = Ω(n2). An optimal schedule

requires only O(n) time: First schedule all transactions with even indices,
then the ones with odd indices.

• Let us try to approximate the work done differently. The transaction,
which has performed more work should win the conflict. A transac-
tion counts the number of accessed resources, starting from 0 after ev-
ery restart. The transaction which has acquired more resources, wins the
conflict. In case both have accessed the same number of resources, the
transaction having locked the resource may proceed and the other has to
wait.

Analysis: Deadlock possible: Transaction A and B start concurrently.
Transaction A writes to R1 as its first operation and to R2 as its second
operation. Transaction B writes to the resources in opposite order.

Randomized contention managers

Though the lower bound of the previous section (Theorem 13.6) is valid for both
deterministic and randomized schemes, let us look at a randomized approach:
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Each transaction chooses a random priority in [1, n]. In case of a conflict, the
transaction with lower priority gets aborted. (If both conflicting transactions
have the same priority, both abort.)

Additionally, if a transaction A was aborted by transaction B, it waits until
transaction B committed or aborted, then transaction A restarts and draws a
new priority.

Analysis: Assume the adversary cannot change the resource requirements,
otherwise we cannot show more than a competitive ratio of n, see Theorem
13.6. Assume if two transactions A and B (potentially) conflict (i.e., write to
the same resource), then they require the resource for at least a fraction c of their
running time. We assume a transaction T potentially conflicts with dT other
transactions. Therefore, if a transaction has highest priority among these dT

transactions, it will abort all others and commit successfully. The chance that
for a transaction T a conflicting transaction chooses the same random number
is (1 − 1/n)dT > (1 − 1/n)n ≈ 1/e. The chance that a transaction chooses the
largest random number and no other transaction chose this number is thus at
least 1/dT · 1/e. Thus, for any constant c ≥ 1, after choosing e · dT · c · lnn
random numbers the chance that transaction T has commited successfully is

1 −
(

1 − 1

e · dT

)e·dT ·c·ln n

≈ 1 − e−c ln n = 1 − 1

nc
.

Assuming that the longest transaction takes time tmax, within that time a
transaction either commits or aborts and chooses a new random number. The
time to choose e · tmax · c · lnn numbers is thus at most e · tmax · dT · c · lnn =
O(tmax · dT · lnn). Therefore, with high probability each transaction makes
progress within a finite amount of time, i.e., our algorithm ensures wait freedom.
Furthermore, the competitive ratio of our randomized contention manger for the
previously considered dining philosophers problem is w.h.p. only O(lnn), since
any transaction only conflicts with two other transactions.


