Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Principles of Distributed Computing Exercise 3: Sample Solution

1 License to Match

a) We use a variant of the Echo algorithm (Algorithm 12). A node (i.e. an agent in the hierarchy) matches up all (except for at most one) of his children. If the node or one of its children is left out, then the node sends a request to "match" upwards in the hierarchy. Otherwise, it sends a "no match" and that subtree is done. We give an asynchronous, uniform algorithm below.

```
Algorithm 1 Edge-Disjoint Matching
    wait until received message from all children
    while at least 2 requests remain (including myself) do
        match any two requests
    end while
    if exists leftover request then
        send "match" to parent (= superior)
    else
        send "no match" to parent
    end if
```

When a node v sends a "match" request to its parent u, then the edge $\{u, v\}$ will be used only once since there will be only one request in the subtree rooted at v.
b) Let T be the tree with n nodes. Assuming each message takes at most 1 time unit, then the time complexity of Algorithm 1 is in $\mathrm{O}(\operatorname{depth}(T))$ since all the requests travel to the root (and back down if we inform the agents of their assigned partners). On each link, there are at most 2 messages: 1 that informs the parent whether a match is needed and optionally 1 more to be informed by the parent of the match partner. So there are a total of at most $2(n-1)$ messages.

2 License to Distribute

a) Again we apply an echo-style algorithm where a node locally balances the documents as much as possible. For each node v we can define

$$
\operatorname{balance}(v):=\operatorname{have}(v)-\operatorname{need}(v)
$$

where have (v) is the total number of documents and need (v) is the number of nodes in the subtree rooted at v. Each node then computes and sends this balance to its parent. Again the algorithm is asynchronous and uniform. Abstractly we refer to a document as a token. When we gather the balance information from the children, they also send along any extra tokens they might have.

```
Algorithm 2 Token Distribution for node \(v\)
    wait until received balance from all children
    balance(v) \(:=0\)
    for each child c do
        balance(v) := balance(v) + balance(c)
    end for
    balance(v) := balance(v) + tokens(v) - 1
    send up balance(v)
    if balance \((\mathrm{v})<0\) then
        wait to receive needed tokens from parent
    end if
    redistribute tokens among children
```

b) The time complexity is in $\mathrm{O}(\operatorname{depth}(T))$ analogous to Exercise 1. Again, there is one message upwards for each link and optionally one downwards with the missing tokens. Thus there are at most $2(n-1)$ messages.

