Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Principles of Distributed Computing Solution 10

1 Lightest Edges

a) Clearly, the execution of this algorithm cannot take more than n rounds. Let the $(n-1)$ lightest edges form two stars of the same size and the $n^{\text {th }}$ lightest edge connect the two centers of the stars. We are not interested in the distribution of the other weights. In this scenario it takes $\lceil n / 2\rceil$ rounds until the two center nodes announce the $n^{\text {th }}$ lightest edge. Since it is necessary to know this edge, the algorithm cannot terminate earlier and the time complexity of this algorithm is $\Omega(n)$.

b) We first prove that the time complexity is upper bounded by $\lceil\sqrt{2 n}\rceil \in O(\sqrt{n})$. After $\lceil\sqrt{2 n}\rceil$ rounds, all nodes with at most $\sqrt{2 n}$ edges among the n lightest edges have broadcast all relevant edges known to them. That means, after $\lceil\sqrt{2 n}\rceil$ rounds, there can only be missing edges between nodes that initially had at least $\sqrt{2 n}+1$ lightest edges leading to nodes that are also incident to at least $\sqrt{2 n}$ lightest edges. Assume there is such a node. Since each edge connects two nodes, initially we must have had at least $(\sqrt{2 n}+1)^{2} / 2>n$ lightest edges, a contradiction.
We now construct a worst-case example. Each edge connecting two nodes from a specific set of $\lfloor\sqrt{2 n}\rfloor$ nodes is assigned one of the n smallest weights. Since there are $\binom{\lfloor\sqrt{2 n}\rfloor}{ 2} \leq n$ edges between these nodes, we know that all edges between these nodes must be broadcast. Apparently, the $\lfloor\sqrt{2 n}\rfloor$ nodes will announce at most the same number of edges in each round. Thus, in total at least $\lfloor\sqrt{2 n}\rfloor / 2 \in \Omega(\sqrt{n})$ rounds are required.
c) Node v can send the $n^{\text {th }}$ smallest edge weight to all nodes. Every node v_{i} can now determine how many among its edges $\left(v_{i}, v_{j}\right)$, where $i<j$, belong to the n lightest edges and send this value N_{i} to all nodes. Now, the nodes know to which node they have to send their edge weights such that they can be distributed in the next round without contention: Node v_{i} sends its smallest weight to the node v_{k}, where $k=1+\sum_{j=1}^{i-1} N_{j}$, the next one to v_{k+1}, etc. Thus, every node receives exactly one edge weight to forward to all nodes. This procedure takes four rounds, i.e., the time complexity is $O(1)$.

