
FS 2009 Prof. R. Wattenhofer / C. Lenzen / T. Locher

Principles of Distributed Computing

Exercise 5

1 Shared Sum

In the lecture, we discussed how shared registers can be employed efficiently to allow each process
to announce a value to all other processes. Now we look at a different scenario: Each process pi

computes a local variable xi and we want to make the sum x :=
∑

n

i=1
xi available to all processes.

We want to guarantee the following: If a process updates xi, it should first ensure that x is
updated accordingly before proceeding.

a) Give a solution using a single shared register supporting the fetch-and-add operation with a
constant update and access complexity. If possible, prevent both lockouts and deadlocks.

b) Give a solution using a single compare-and-swap register, also with constant access complex-
ity. If successful, an update should need a constant number of steps (otherwise the process
may retry). Are lockouts excluded?

c) Give a solution using a single load-link/store-conditional register. Compare it to the preced-
ing solutions.

d) Assume now that the return value of compare-and-swap is not whether the operation suc-
ceeded, but the value stored in the register after the operation. Can the problem still be
solved? Proof your claim!

2 Space Efficient Binary Tree Algorithm

Algorithm 24 from the lecture requires to store a complete binary tree of depth n− 1, resulting in
exponential memory requirements.

Suppose Algorithm 24 is modified the following way: Whenever a process leaves a splitter with
result left or right it flips a coin to replace this result by left or right with probability 1/2 each.

a) Bound the expected number of hops of a process until it leaves a splitter with stop, depending
on the number k of active processes starting at the root of the tree.

Hint: Try the same approach as used to bound the expected running time of Algorithm 18,
but on the number of processes decending a specific path in the binary tree.

b) Infer a bound on this number that holds w.h.p. (with high probability, c.f. script).

Hint: Use Chernoff’s bound!

c) Conclude that the depth of the subtree induced by the marked nodes is w.h.p. in O(log k).
How much memory has to be allocated to exclude a segmentation fault w.h.p.?

Hint: Make clever use of the definition of w.h.p.!


