
Chapter 3

Tree Algorithms

In this chapter, we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit one the simple side. But maybe that’s not really bad
news?!

3.1 Broadcast

Definition 3.1 (Broadcast) A broadcast operation is initiated by a single
processor, the source. The source wants to send a message to all other nodes in
the system.

Definition 3.2 (Distance, Radius, Diameter) The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path be-
tween u and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any node in the graph. The diameter of a graph is the maximum distance
between two arbitrary nodes.

Remarks:

• Clearly there is a close relation between the radius R and the diameter D
of a graph, such as R ≤ D ≤ 2R.

• The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph.
For this graph it has long been believed that the actor Kevin Bacon has
a particularly small radius. The number of hops from Bacon even got a
name, the Bacon Number. In the meantime, however, it has been shown
that there are “better” centers in the Hollywood universe, such as Sean
Connery, Christopher Lee, Rod Steiger, Gene Hackman, or Michael Caine.
The center of other social networks has also been explored, Paul Erdös for
instance is well known in the math community.

Theorem 3.3 (Broadcast Lower Bound) The message complexity of broad-
cast is at least n−1. The source’s radius is a lower bound for the time complexity.

23

24 CHAPTER 3. TREE ALGORITHMS

Proof: Every node must receive the message.

Remark:

• You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search spanning
tree (for a given source), then the time complexity is tight as well.

Definition 3.4 (Clean) A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 3.5 (Clean Broadcast Lower Bound) For a clean network, the
number of edges is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Remark:

• This lower bound proof directly brings us to the well known flooding al-
gorithm.

Algorithm 11 Flooding

1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the

message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-

card the message.

Remarks:

• If node v receives the message first from node u, then node v calls node
u parent. This parent relation defines a spanning tree T . If the flooding
algorithm is executed in a synchronous system, then T is a breadth-first
search spanning tree (with respect to the root).

• More interestingly, also in asynchronous systems the flooding algorithm
terminates after R time units, R being the radius of the source. However,
the constructed spanning tree may not be a breadth-first search spanning
tree.

3.2 Convergecast

Convergecast is the same as broadcast, just reversed: Instead of a root sending
a message to all other nodes, all other nodes send information to a root. The
simplest convergecast algorithm is the echo algorithm:

3.3. BFS TREE CONSTRUCTION 25

Algorithm 12 Echo

Require: This algorithm is initiated at the leaves.
1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message

to the parent.

Remarks:

• Usually the echo algorithm is paired with the flooding algorithm, which is
used to let the leaves know that they should start the echo process; this
is known as flooding/echo.

• One can use convergecast for termination detection, for example. If a root
wants to know whether all nodes in the system have finished some task, it
initiates a flooding/echo; the message in the echo algorithm then means
“This subtree has finished the task.”

• Message complexity of the echo algorithm is n − 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the graph.

• The time complexity of the echo algorithm is determined by the radius of
the spanning tree generated by the flooding algorithm.

• The flooding/echo algorithm can do much more than collecting acknowl-
edgements from subtrees. One can for instance use it to compute the num-
ber of nodes in the system, or the maximum ID (for leader election!?), or
the sum of all values stored in the system, or a route-disjoint matching.

• Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation. And
so on . . .

3.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize this
idea by developing the BFS tree layer by layer:

Theorem 3.6 (Analysis of Algorithm 13) The time complexity of Algorithm
13 is O(D2), the message complexity is O(m + nD), where D is the diameter
of the graph, n the number of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in Tp needs at most time 2D. Finding new
neighbors at the leaves costs time 2. Since the BFS tree height is bounded
by the diameter we have D phases, giving a total time complexity of O(D2).

26 CHAPTER 3. TREE ALGORITHMS

Algorithm 13 Dijkstra BFS

1: The algorithm proceeds in phases. In phase p the nodes with distance p to
the root are detected. Let Tp be the tree in phase p. We start with T1 which
is the root plus all direct neighbors of the root. We start with phase p = 1:

2: repeat
3: The root starts phase p by broadcasting “start p” within Tp.
4: When receiving “start p” a leaf node u of Tp (that is, a node that was

newly discovered in the last phase) sends a “join p + 1” message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leave of the tree Tp+1.

6: A node v receiving any further “join” message replies with “NACK”.
7: The leaves of Tp collect all the answers of their neighbors; then the leaves

start an echo algorithm back to the root.
8: When the echo process terminates at the root, the root increments the

phase
9: until there was no new node detected

Each node participating in broadcast/echo only receives (broadcast) at most 1
message and sends (echo) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m + nD).

Remark:

• The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a
neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 14 Bellman-Ford BFS

1: Each node u stores an integer du which corresponds to the distance from u
to the root. Initially droot = 0, and du = ∞ for every other node u.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < du from a neighbor v then
4: node u sets du := y
5: node u sends “y + 1” to all neighbors (except v)
6: end if

Theorem 3.7 (Analysis of Algorithm 14) The time complexity of Algorithm
14 is O(D), the message complexity is O(nm), where D, n, m are defined as in
Theorem 3.6.

3.4. MST TREE CONSTRUCTION 27

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
knows by time 0 that it is the root. A node v at distance d has a neighbor u
at distance d− 1. Node u by induction sends a message “d” to v at time d− 1
or before, which is then received by v at time d or before. Message complexity
is easier: A node can reduce its distance at most n − 1 times; each of these
times it sends a message to all its neighbors. If all nodes do this we have O(nm)
messages.

Remarks:

• Algorithm 13 has the better message complexity and Algorithm 14 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(m + n log3 n) messages and O(D log3 n) time. This “trade-off”
algorithm is beyond the scope of this course.

3.4 MST Tree Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight ωe.

Definition 3.8 (MST) Given a weighted graph G = (V, E, ω). The MST of
G is a spanning tree T minimizing ω(T), where ω(G′) =

∑

e∈G′ ωe for any
subgraph G′ ⊆ G.

Remarks:

• In the following we assume that no two edges of the graph have the same
weight. This simplifies the problem as it makes the MST unique; however,
this simplification is not essential as one can always break ties by adding
the IDs of adjacent vertices to the weight.

• Obviously we are interested in computing the MST in a distributed way.
For this we use a well-known lemma:

Lemma 3.9 For a given graph G let T be an MST, and T ′ ⊆ T be a subgraph
(also known as fragment) of the MST. Edge e = (u, v) is an outgoing edge of
T ′ if u ∈ T ′ and v /∈ T ′ (or vice versa). Let the minimum weight outgoing edge
of T ′ be the so-called blue edge b(T ′). Then T ′ ∪ b(T ′) ⊆ T .

Proof: We simplify the proof by assuming to have distinct edge weights, then
the MST T is unique. For the sake of contradiction, suppose that in the MST T
there is edge e 6= b(T ′) connecting T ′ with the remainder of T . Adding the blue
edge b(T ′) to the MST T we get a cycle including both e and b(T ′). If we remove
e from this cycle we still have a spanning tree, and since by the definition of the
blue edge ωe > ωb(T ′), the weight of that new spanning tree is less than than
the weight of T . We have a contradiction.

28 CHAPTER 3. TREE ALGORITHMS

Remarks:

• In other words, the blue edges seem to be the key to a distributed al-
gorithm for the MST problem. Since every node itself is a fragment of
the MST, every node directly has a blue edge! All we need to do is to
grow these fragments! Essentially this is a distributed version of Kruskal’s
sequential algorithm.

• At any given time the nodes of the graph are partitioned into fragments
(rooted subtrees of the MST). Each fragment has a root, the ID of the
fragment is the ID of its root. Each node knows its parent and its children
in the fragment. The algorithm operates in phases. At the beginning of a
phase, nodes know the IDs of the fragments of their neighbor nodes.

Algorithm 15 GHS

1: Initially each node is the root of its own fragment. We proceed in phases:
2: repeat
3: All nodes learn the fragment IDs of their neighbors.
4: The root of each fragment uses flooding/echo in its fragment to determine

the blue edge b = (u, v) of the fragment.
5: The root sends a message to node u; while forwarding the message on the

path from the root to node u all parent-child relations are inverted {such
that u is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u, v).
7: if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly

10: the newly elected root node informs all nodes in its fragment (again
using flooding/echo) about its identity

11: else
12: node v is the new parent of node u
13: end if
14: until all nodes are in the same fragment

Remark:

• There are a few details that are not really synchronous. For instance, it
may be that some fragments are much larger than others, and because of
that some nodes may need to wait for others, e.g., if node u needs to find
out whether neighbor v also wants to merge over the blue edge b = (u, v).
The good news is that all this can be solved; indeed, the whole algorithm
does not need to be synchronous in the first place and can be made fully
asynchronous. The standard trick to do that is to add additional phase
information to all messages, and only allow nodes to proceed to phase
p + 1 if all neighbors are at least in phase p. We will see better examples
for this technique later.

Theorem 3.10 (Analysis of Algorithm 15) The time complexity of Algo-
rithm 15 is O(n log n), the message complexity is O(m log n).

3.4. MST TREE CONSTRUCTION 29

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and
O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most log n phases. The theorem
follows directly.

Remarks:

• Algorithm 15 is called “GHS” after Gallager, Humblet, and Spira, three pi-
oneers in distributed computing. Despite being quite simple the algorithm
won the prestigious Edsger W. Dijkstra Prize in Distributed Computing
in 2004, among other reasons because it was one of the first (1983) non-
trivial asynchronous distributed algorithms. As such it can be seen as one
of the seeds of this research area.

• We presented a simplified version of the original paper by Gallager et al.
that featured an improved message complexity of O(m + n log n).

• In 1987, Awerbuch managed to further improve the GHS algorithm to get
O(n) time and O(m + n log n) message complexity, both asymptotically
optimal.

• The GHS algorithm can be applied in different ways. GHS for instance
directly solves leader election in general graphs: The leader is simply the
last surviving root!

30 CHAPTER 3. TREE ALGORITHMS

