

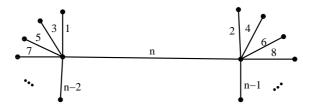
FS 2008

Prof. R. Wattenhofer / Dr. F. Kuhn / T. Locher / Y. A. Oswald / C. Lenzen

Principles of Distributed Computing Solution 7

1 Lightest Edges

a) Clearly, the execution of this algorithm cannot take more than n rounds. Let the (n-1) lightest edges form two stars of the same size and the n^{th} lightest edge connect the two centers of the stars. We are not interested in the distribution of the other weights. In this scenario it takes $\lceil n/2 \rceil$ rounds until the two center nodes announce the n^{th} lightest edge. Since it is necessary to know this edge, the algorithm cannot terminate earlier and the time complexity of this algorithm is $\Omega(n)$.



b) We first prove that the time complexity is upper bounded by $\lceil \sqrt{2n} \rceil + 1 \in O(\sqrt{n})$. After $\lceil \sqrt{2n} \rceil + 1$ rounds, all nodes with at most $\lceil \sqrt{2n} \rceil + 1$ edges among the n lightest edges have broadcast all relevant edges known to them. That means, after $\lceil \sqrt{2n} \rceil + 1$ rounds, there can only be missing edges between nodes that initially had at least $\lceil \sqrt{2n} \rceil + 1$ lightest edges leading to nodes that are also connected to at least $\lceil \sqrt{2n} \rceil + 1$ lightest edges. Assume there is such a node. Since each edge connects two nodes, initially we must have had at least $(\lceil \sqrt{2n} \rceil + 1) \cdot (\lceil \sqrt{2n} \rceil + 1)/2 > n$ lightest edges, a contradiction.

We now construct a worst-case example:¹ Each edge connecting two nodes from a specific set of $\lfloor \sqrt{2n} \rfloor$ nodes is assigned one of the n smallest weights. Since there are $\binom{\lfloor \sqrt{2n} \rfloor}{2}$ edges between these nodes and since

$$\binom{\lfloor \sqrt{2n} \rfloor}{2} \le n,$$

we know that all edges between these nodes must be broadcast. In each round, each broadcast edge might always be broadcast by both endpoints, thus the nodes only learn about $\lfloor \sqrt{2n} \rfloor / 2$ edges in each round. Hence, the algorithm needs at least

$$\frac{\binom{\lfloor \sqrt{2n} \rfloor}{2}}{\lfloor \sqrt{2n} \rfloor/2} \ge \frac{n - 2\sqrt{2n}}{\lfloor \sqrt{2n} \rfloor/2} \ge \frac{2n - 4\sqrt{2n}}{\sqrt{2n}} = \sqrt{2n} - 4$$

rounds, proving that the time complexity is $\Omega(\sqrt{n})$.

 $^{^{1}}$ We assume that n is even.

c) Node v can send the n^{th} smallest edge weight to all nodes. Every node v_i can now determine how many among its edges (v_i, v_j) , where i < j, belong to the n lightest edges and send this value N_i to all nodes. Now, the nodes know to which node they have to send their edge weights such that they can be distributed in the next round without contention: Node v_i sends its smallest weight to the node v_k , where $k = 1 + \sum_{j=1}^{i-1} N_j$, the next one to v_{k+1} , etc. Thus, every node receives exactly one edge weight to forward to all nodes. This procedure takes four rounds, i.e., the time complexity is O(1).