
FS 2008 Prof. R. Wattenhofer / Dr. F. Kuhn / T. Locher / Y. A. Oswald / C. Lenzen

Principles of Distributed Computing

Solution 6

1 Distributed Network Partitioning

Throughout this exercise, we use the following definition: For any node v let Ni(v) := {w ∈
V | d(v, w) ≤ i}, i.e., Ni(v) denotes the set of nodes within distance i to v.

a) We use an echo/flooding algorithm on the tree to determine the node with the lowest ID
and appoint it to be the leader. We assume w.l.o.g. that no two messages are received by a
node at the same time. Each leaf sends its ID to its parent. All other nodes wait until they
have received the IDs from all but one neighbor. Then they choose the smallest amongst
these and their own IDs and send it to the remaining neighbor. If a node receives a message
after sending its own, it compares the received ID to the one it sent. The smaller of the two
is the ID of the leader, which is then broadcast to the remaining n− 2 nodes.

Correctness: Observe that each node determines the smallest ID in the subtree it belongs to,
when the egde to the neighbor that has not sent a message yet, is deleted. The last two nodes
will send each other a message, after the subtrees corresponding to the two neighboring nodes
have been processed (recall that messages do not arrive at identical times). Subsequently,
they will broadcast the minimum of the lowest IDs of the two subtrees as the ID of the
leader. Thus all nodes will be informed about a unique ID specifying the leader.

Complexity: The running time is O(D) ⊆ O(n), where D is the diameter and the message
complexity is in O(n) since we are running it on a tree (n-1 edges). For details see Algorithms
11 and 12 in the script.

b) The leader starts modified flooding/echo rounds with increasing diameter until the cluster
criterion is met. Simultaneously, a BFS tree around the leader is constructed that will be
needed to reduce the number of messages sent. Initially, the tree consists of the cluster leader
l only, which is considered the root.

In round i the cluster leader initiates a flooding/echo on the BFS tree. A node that joined
the BFS tree in round i − 1 (a i − 1-hop neighbor of l, or l itself if i = 1) will notify all its
direct neighbors within the whole graph. Once a node v not already in the BFS tree receives
such a notification from a node p, it joins the BFS tree with p as parent and informs p about
this. If a node already in the BFS tree receives such a notification, it informs the node
sending it that it will not join the BFS tree. All nodes in the tree accumulate the number of
nodes in their subtree and return them to their parent. Thus l will be informed about the
number of nodes within range i (Ni(l)) when round i finishes after at most 2i time units.

This procedure is started with i = 1 and stops when 2|Ni−1(l)| ≥ |Ni(l)|. Then l informs the
nodes in Nr(l) that they participate in its cluster by a broadcast in the constructed BFS tree.
The correctness of this procedure is obvious from the construction. The time complexity is∑r+1

i=1 2i = (r + 1)(r + 2) for the flooding/echo steps, and additional r + 1 time units for the
final broadcast. In total we get a time complexity of O(r2). Due to the stop criterion we
have |C| ≥ 2r. Thus we have r ≤ log |C|, implying O(r2) ⊆ O(log2 |C|) ⊆ O(|C|).

c) The ith step of the construction from b) will require two messages to be sent over all egdes
from nodes that joined the BFS tree in the (i − 1)th step, plus two messages per edge
in the already constructed BFS tree. For the former, observe that during the (stepwise)
construction of the BFS tree we send messages over each edge in E′ at most twice, as E′

is the set of edges with at least one endpoint in the final cluster. For the latter, note that
the number of edges in the tree after the ith step is |Ni(l)| − 1. We have the condition
|Ni(l)| > 2|Ni−1(l)| for i ∈ {2, . . . , r}, hence we can estimate 2|Ni(l)| ≤ 2−r+i+1|Nr(l)| for
i ∈ {1, . . . , r}. Summing over i, we may estimate the total number of messages by

r∑

i=1

2(|Ni(l)| − 1) < |Nr(l)|
r∑

i=1

2−r+i+1 = 2|Nr(l)|
r−1∑

i=0

2−i < 4|E′|.

Thus, in total at most (4+2)|E′| ∈ O(|E′|) messages are sent during the construction phase
of the cluster in the worst case.

d) Consider the MST to be rooted at the first leader. We apply a distributed depth-first search
strategy on the MST. After each cluster construction step, the current leader continues the
depth-first search on the MST for the next leader. In the course of the algorithm execution,
the MST is hence traversed twice, i.e., the time and message complexity is O(n).

e) Let Ci, i ∈ I, denote the vertex sets of the constructed clusters and E′
i the edges “removed”

after the cluster construction of the ith cluster. By c) the total number of messages due
to the cluster construction is bounded by

∑
i O(|E′

i|) = O(m), since the E′
i are disjoint.

By part b) of the exercise we have a worst-case estimate for the (total) time complexity
of cluster construction of

∑
i O(|Ci|) = O(n), using that the vertex sets of the clusters are

disjoint. Finally we have to add O(n) messages and O(n) time due to leader election, which
was shown in d). Putting everything together, we conclude that the time complexity is O(n)
and the message complexity is O(n + m) = O(m).

2

