Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
FS 2008

Principles of Distributed Computing Exercise 4: Sample Solution

1 Deterministic Maximal Independent Set

a) Consider the graph consisting of a connected chain of k nodes v_{1}, \ldots, v_{k}. We add $i-1$ additional edges leading to $i-1$ additional nodes at node v_{i} for all $i \in\{1, \ldots, k-1\}$ and k additional edges to k additional nodes at node v_{k}. The degree $\delta\left(v_{1}\right)$ of v_{1} is 1 and for all other nodes $v_{i} \in\{2, \ldots, k\}$ we have that $\delta\left(v_{i}\right)=i+1$. All additional nodes have degree 1 .

In the first round, all nodes except v_{k} have a neighbor with a larger degree, thus only v_{k} joins the MIS. Afterwards, only v_{k-1} can decide and so on. Thus, after k time all nodes v_{1}, \ldots, v_{k} and also the additional nodes have decided to join or not to join the MIS.
The number of nodes in this graph is

$$
n=k+\sum_{i=1}^{k}(i-1)+1=1+\sum_{i=1}^{k} i=1+\frac{k(k+1)}{2} \leq \frac{(k+1)^{2}}{2} .
$$

The time complexity is thus $k \geq \sqrt{2 n}-1 \in \Omega(n)$.
b) Instead of a chain, we now consider a ring of k nodes v_{1}, \ldots, v_{k}. We use $k-1$ additional nodes u_{1}, \ldots, u_{k-1} to increase the degrees of the nodes v_{i} : There is an edge $\left\{v_{i}, u_{j}\right\}$ from all nodes v_{i} to all nodes u_{j}, where $j \in\{1, k-i\}$. It is easy to see that the degree $\delta\left(v_{i}\right)$ of node v_{i} is $k+2-i$, and that $\delta\left(u_{j}\right)=k-j$.
In the first round, only v_{1} joins the MIS. This means that all nodes u_{1}, \ldots, u_{k-1} and also v_{2} and v_{k} can no longer join the MIS. Thus, in the second round, all these nodes broadcast their decision to all their neighbors that they will not join the MIS. In the third round, only v_{3} decides to join the MIS because all other undecided nodes have an undecided neighbor with a larger degree. Subsequently, only v_{4} decides (not to join the MIS) in round 4. Repeating this argument, we get that the last node v_{k-1} makes its decision not before round $k-1$. Since $n=k+(k-1)<2 k$, the time complexity is thus $k>\frac{n}{2} \in \Omega(n)$.

2 Randomized Maximal Independent Set

Consider the following graph consisting of two components: Node v is attached to nodes $v_{1}, \ldots, v_{n / 2-1}$. The second component is a chain of nodes $u_{1}, \ldots, u_{n / 2}$. The two components are connected at the nodes v and u_{1}, i.e., there is an edge between v and u_{1}. Thus, the graph consists of a star (with center v) and an attached chain of $\frac{n}{2}$ nodes.

The maximum degree is $\Delta=\delta(v)=\frac{n}{2}$. Thus, all the nodes in the chain (except $u_{n / 2}$) mark themselves with probability $\frac{2}{2 n / 2}=\frac{2}{n}$. As the length of the chain is $\frac{n}{2}$, only one node in the chain marks itself in expectation. Its neighbors can also be removed from the graph, as they can no longer join the MIS. Hence, the chain is "cut" into two subchains. In order to remove 3 nodes again, more than 1 round is required in the next step, as less than 1 node marks itself in expectation in every round. Thus, more than $\frac{n}{6}$ rounds are required to remove all the nodes in the chain. The time complexity is thus $\Omega(n)$.

