
From Shared Memory
to Message Passing

Stefan Schmid
T-Labs / TU Berlin

Some parts of the lecture, parts of the „Skript“ and exercises will be based on the lectures of
Prof. Roger Wattenhofer at ETH Zurich

and
Prof. Christian Scheideler at University Paderborn.

Stefan Schmid @ T-Labs Berlin, 2011 2

Message Passing

Many distributed systems do not have a shared memory,
but pass messages along networks: social networks...

Pony express: mail along road networks

Stefan Schmid @ T-Labs Berlin, 2011 3

Message Passing

Many distributed systems do not have a shared memory,
but pass messages along networks: ... Internet networks ...

Internet

Stefan Schmid @ T-Labs Berlin, 2011 4

Message Passing

Many distributed systems do not have a shared memory,
but pass messages along networks: ... but also wireless networks.

Multi-hop sensor networks

Stefan Schmid @ T-Labs Berlin, 2011 5

Fundamental Questions: Communication Network?

Sometimes topology can be chosen (e.g., peer-to-peer networks)!
What communication networks / architectures are „good“?
A comparison.
(degree-diameter tradeoff, network expansion, routing, robustness
under dynamics, ...)

Line: simple, but long communication delays and not robust?

0

1

2

00 01 10 11

Butterflies?

000

100 110

111

001

010 101

011
De Bruijn graphs?

Stefan Schmid @ T-Labs Berlin, 2011 6

What is the „best“ degree / diameter tradeoff?

Line: diameter n-1, degree 2

Clique: diameter 1, degree n-1

Hypercube: diameter log n, degree log n

Can we reduce both?
Yes.
It must hold that degreediameter > n (why?)

Pancake graphs: log n / loglog n diameter, log n / loglog n degree

How to make these topologies robust and dynamic? (E.g.,
continuous-discrete approach)

Stefan Schmid @ T-Labs Berlin, 2011 7

Fundamental Questions: Algorithms

Fundamental tasks on networks:
- Routing: sending a message from node A to node B?
- Broadcasting: sending a message to all nodes?
- Aggregation: Finding the most frequent element in the network? The node

measuring the hottest temperature? Etc.
- Electing a leader
- Coloring the network (e.g., frequency spectrum allocation in wireless networks),

computing independent sets, etc.

Complexity evaluation:
- Distributed runtime: number of

communication rounds until task fulfilled?
- Message complexity: number (and size) of

messages to be transmitted?
- Local complexity of algorithm: Complexity

of algorithm in node?

Stefan Schmid @ T-Labs Berlin, 2011 8

Example: Local Vertex Coloring

Sometimes local algorithm can approximate even
NP-hard problems quite well and fast!

Each processor / node must act
based on information about its k-hop
neighborhood! (Fast and efficient
algorithms, good under dynamics!)

Local Algorithm

Nodes should color themselves such
that no adjacent nodes have same
color – but minimize # colors!

Vertex Coloring

Used, e.g., for wireless spectrum
allocation...

Stefan Schmid @ T-Labs Berlin, 2011 9

Local Algorithm

Simplified round model, all nodes execute the same protocol, ...

In one round:
1. send messages (message complexity)
2. receive messages
3. process messages (local computation complexity)

Number of rounds until termination: time complexity

Stefan Schmid @ T-Labs Berlin, 2011 10

Local Algorithm

Simplified round model, all nodes execute the same protocol, ...

In one round:
1. send messages (message complexity)
2. receive messages
3. process messages (local computation complexity)

Number of rounds until termination: time complexity

Stefan Schmid @ T-Labs Berlin, 2011 11

Local Algorithm

Simplified round model, all nodes execute the same protocol, ...

In one round:
1. send messages (message complexity)
2. receive messages
3. process messages (local computation complexity)

Number of rounds until termination: time complexity

Stefan Schmid @ T-Labs Berlin, 2011 12

Local Algorithm

Simplified round model, all nodes execute the same protocol, ...

In one round:
1. send messages (message complexity)
2. receive messages
3. process messages (local computation complexity)

Number of rounds until termination: time complexity

Stefan Schmid @ T-Labs Berlin, 2011 13

Local Vertex Coloring for Rooted Tree?

Ideas? (Assume, e.g., arbitrary but unique IDs are given at nodes...)

Stefan Schmid @ T-Labs Berlin, 2011 14

Local Vertex Coloring for Tree?

Two colors suffice: root sends binary message down...

Stefan Schmid @ T-Labs Berlin, 2011 15

Local Vertex Coloring for Tree?

Two colors suffice: root sends binary message down...

Stefan Schmid @ T-Labs Berlin, 2011 16

Local Vertex Coloring for Tree?

Two colors suffice: root sends binary message down...

Stefan Schmid @ T-Labs Berlin, 2011 17

Local Vertex Coloring for Tree?

Two colors suffice: root sends binary message down...

Time complexity?
Message complexity?
Local compuations?

Stefan Schmid @ T-Labs Berlin, 2011 18

Local Vertex Coloring for Tree?

Can we do faster than diameter of tree?!

Yes! With constant number of colors in

log*(n) time!!

One of the fastest non-constant time algos that exist! (...
Besides inverse Ackermann function or so)

(log = divide by two, loglog = ?, log* = ?)

log* (# atoms in universe) ≈

5

Why is this good? If something happens (dynamic network),
back to good state in a sec!

How? You will learn. ☺
There is a lower bound of log-star too, so that‘s optimal!

Stefan Schmid @ T-Labs Berlin, 2011 19

How does it work?

0010110000

1010010000

0110010000

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

...

...

Idea:
root should have label 0 (fixed)
in each step: send ID to cv to all children;
receive cp from parent and interpret as little-endian bit string: cp =c(k)...c(0)
let i be smallest index where cv and cp differ
set new cv = i (as bit string) || cv (i)
until cv ∈

{0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2011 20

How does it work?

0010110000

1010010000

0110010000

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

...

...

Idea:
root should have label 0 (fixed)
in each step: send ID to cv to all children;
receive cp from parent and interpret as little-endian bit string: cp =c(k)...c(0)
let i be smallest index where cv and cp differ
set new cv = i (as bit string) || cv (i)
until cv ∈

{0,1,2,...,5} (at most 6 colors)

Round 1

Stefan Schmid @ T-Labs Berlin, 2011 21

How does it work?

0010110000

1010010000

0110010000

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

...

...

Idea:
root should have label 0 (fixed)
in each step: send ID to cv to all children;
receive cp from parent and interpret as little-endian bit string: cp =c(k)...c(0)
let i be smallest index where cv and cp differ
set new cv = i (as bit string) || cv (i)
until cv ∈

{0,1,2,...,5} (at most 6 colors)

Round 1
1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

Stefan Schmid @ T-Labs Berlin, 2011 22

How does it work?

10010

01010

10001

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

...

...

Idea:
root should have label 0 (fixed)
in each step: send ID to cv to all children;
receive cp from parent and interpret as little-endian bit string: cp =c(k)...c(0)
let i be smallest index where cv and cp differ
set new cv = i (as bit string) || cv (i)
until cv ∈

{0,1,2,...,5} (at most 6 colors)

Round 2

Stefan Schmid @ T-Labs Berlin, 2011 23

How does it work?

10010

01010

10001

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

Idea:
root should have label 0 (fixed)
in each step: send ID to cv to all children;
receive cp from parent and interpret as little-endian bit string: cp =c(k)...c(0)
let i be smallest index where cv and cp differ
set new cv = i (as bit string) || cv (i)
until cv ∈

{0,1,2,...,5} (at most 6 colors)

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

Stefan Schmid @ T-Labs Berlin, 2011 24

How does it work?

111

001

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

Idea:
root should have label 0 (fixed)
in each step: send ID to cv to all children;
receive cp from parent and interpret as little-endian bit string: cp =c(k)...c(0)
let i be smallest index where cv and cp differ
set new cv = i (as bit string) || cv (i)
until cv ∈

{0,1,2,...,5} (at most 6 colors)

Round 3,
etc.

...

...

...

Stefan Schmid @ T-Labs Berlin, 2011 25

Why does it work?

Why is this log* time?!

Idea: In each round, the size of the ID (and hence the number of colors) is reduced by a log factor:
To index the bit where two labels of size n bits differ, log(n) bits are needed!
Plus the one bit that is appended...

Why is this a valid vertex coloring?!

Idea: During the entire execution, adjacent nodes always have different colors (invariant) because:
IDs always differ as new label is index of difference to parent plus own bit there (if parent would differ
at same location as grand parent, at least the last bit would be different).

Stefan Schmid @ T-Labs Berlin, 2011 26

Lower Bound

R-hop view of a node v defined as set
of states of all nodes in r-hop
neighborhood of v.

r-hop View

Vertices of neighborhood graph are r-hop
views; vertices are connected if views could
result from adjacent nodes!

Neighborhood Graph

Observe: Any deterministic vertex coloring algorithm can be seen as mapping r-
hop neighborhoods to colors.

Observe: Chromatic number of neighborhood graph (classic coloring) implies
possible local algorithm coloring.

=> Gives us lower bound of possible colorings with r-neighborhood!

	From Shared Memory�to Message Passing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

