Distributed Computing over
Communication Networks:

Soclal Networks



Social Relationships in Karate Club (1970)

Observations?
Dispute caused split:
guess where!




Small World Networks: Phenomena, Vision, and Science

Karinthy (1929): ,World is shrinking as humans are more connected!”
(inspired by Marconi?)

Hot topic in 60s:
- McLuhan coined ,Global Village*
- Milgram's experiment: average path length between ,random

people”

Milgram‘s experiment:

- Choose random people from US Midwest

- Tell them to send letter to some guy in Boston

- They are only allowed to forward letter to someone they know on first

name basis!
- How many ,hops* until letters arrive? (What do you think?)
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Milgram‘s Experiment

How many hops until letters arrive?
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Results and Discussion

Results:
- Many letters got lost
- But for the ones that arrived, the average hop distance was 5.5!
- ,Six-degrees-of-separation” / ,small world*

How to explain? Not only small diameter but also ,navigable®!

Still an important research question!
- E.g., concept of ,power-law” graphs: node degrees are distributed
according to power law, i.e., number of nodes with degree &
IS proportional to 6> for some o>0
- Power law graphs have been observed also in the Internet, in biology,
in physics, etc.
- Kleinberg'‘s explanation: regular grid with a small number of random links!

Discussion
- Implications of people being closely connected?!
- Many people criticize experiment, or generalization of insight: e.g.,
letter from white person to black person needs more hops, etc.
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Implication for Computer Science?

The good properties of social networks have inspired
scientists and practitioners to build computer
networks with similar characteristics!

Example: Jon Kleinberg at Cornell discovered navigable (,,greedy
routable“) social networks, which inspired Clarke/Sandberg/... to
build the peer-to-peer system Freenet.
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Watts-Strogatz Model

I[dea: Model social network as combination of two networks!

(1) As a basis network with large cluster coefficient,
(2) and then add random links (e.g., constant number of random
nodes all over the graph): long-range acquaintances

Important concept in social networks:

Cluster Coefficient

Probability that two friends of a node are also friends,
summed up over all nodes.

Problem:
Is clustering a good measure?
= ? And how to navigate??
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Cluster Coefficient

Careful, not so useful in the ,worst-case”: cluster coefficient of grid?

Coefficient: O

ﬁ Stefan Schmid @ T-Labs, 2011



Cluster Coefficient

And here?

Coefficient: 3/7

(out of 28 pairs of neighbors, 12
are neighbors)
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But how to route...?!

Having a graph model is good, but how did the mail arrive?!

Jon Kleinberg: most simple ,,navigable“social networks

(1) Nodes forward letter to neighbor, without really knowing
whether neighbor is closer to destination!
(2) Only greedy routing can explain phenomenon...

Jon Kleinberg‘s graph model:
the augmented m x m grid

A simple grid with some

additional random links per node
with specific random distribution.
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Kleinberg‘'s Augmented Grid

Augmented Grid

Consider an (m x m) grid of n=m2 nodes, where each node has a

directed edge to each lattice neighbor (local contacts). In addition,
each node has an additional random link (long-range contact).

For all u and v, the long-range contact of u to points to node v with
probability d(u,v)-a/Zwev\{u}d(u,w)-a, where d() is the distance in the
grid and o is a parameter.

Geographic interpretation?
Interpretation of a?

Parameter =0 means uniform at
random (indep. of distance!); larger o
make long-range links shorter.

One can show: if a < 2, the diameter
is polylogarithmic. (=0 implies log
diameter: proof as exercise?) But
what about routing?
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Navigability

Idea how to route on Kleinberg‘s graph?

Greedy Routing

while (not at destination):
go to neighbor which is closest to destination
(considering grid distance only)

Runtime?
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Runtime of Greedy Routing

Greedy Routing

The greedy algorithm finds a routing path of
length at most O(sqgrt(n)).

Proof idea?

There are always neighbors

closer to the destination. We
can reduce the distance in at
least one grid dimension...

QED

But Milgram promises more!
How do random links speed it up?
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Random Links

Random Links

A node u‘s random link leads to a node v
with probability

O(1/(d(u,v)*m2*)) If a<2
®(1/(d(u,v)? log n)) if a=2
®(1/d(u,v)*) if a>2

since d(.,.)> 1, and there are

Proof? at most O(r) new nodes at distance r
1 \ m C’—‘)('!‘) m 1 ],Q—Q' m
. =0 Ir) =0

For a<2 this is ®(m%), for a>2 this is ©(1).

1 m @ " m 1
For a=2 we have: > . .2 ,fz) =e(1)- Z ~=0(logm) = O(logn)

weV\{u} r=1

QED
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Discussion

What does it mean?

m=sqrt(n)...
O(1/(d(u,v)*m2-*)) if a<2 ®: for small a, likely long paths...
®(1/(d(u,v)?log(n))) ifa=2 ©?
®(1/d(u,v)*) if a>2 ®: for large a, likely long paths...

AN

exponential in o

o<2: Links have roughly same distance. We
have to go far until finding a link that points
close to destination (,too random*)! Until
then, we walk on grid...

o>2: Mostly short links only, and we have to
go far until finding a link that reaches far (,,too
focused®)! Until then, we don‘t make much
progress wrt distance...
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Navigability: a=2

So let's study the case a=2!

Phase

Consider routing from node u to v, and assume we are at
some intermediate node w. We say we are in phase | at

node w if the lattice distance d(w,v) to the target v
is between 2 < d(w,v) < 21,

So we count-down phases!
How many phases are there at most?

Logarithmic in max routing distance,
l.e., O(log m)=0O(log n).

O—CO—0O—0
O—O—6—0O
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Navigability: a=2

Lemma

Assume we are at node w in phase j (on the way
from u to v). The probability of getting to phase -1
In one step is at least Q(1/log n).

Proof idea?

Let B, denote the nodes with d(x,v) < 2I. We get to phase -1 from phase j if
the long-range contact of w points to some node in B,. Since we have not
been at w before, its link points to a random node, independent of path to w.
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Navigability: a=2

We know that for all nodes x € Bj,

d(w,X)< d(W,v)+d(v,x) < 21+1+2i < 2i*2 ® Bj.y
(triangle inequality).

So for each x € B;, the probability that B.
W points to X is X
Q(1/(22+*og n)). o}

Why?

See our lemma...

So probability to hit one of them?
Sum over all nodes that are in B;...
And B, (number of nodes at distance) grows quadratic, so at least (2))/2.

So:
| 92j~1 1
Q| |Bj| - = = Q . =Q
( i 22J+410g;n) (223+410gn) (logn.)
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Navigability: a=2

Theorem
The expected path length is O(log? n).

Proof idea?

We have O(log n) phases. We proceed from one phase to
the next with probability at least (1/log n).
And linearity of expectation... ©

QED

Yay, it's polylogarithmic!
So does it explain Milgram? ©

ﬁ Stefan Schmid @ T-Labs, 2011



Propagation Studies

Where to put ice cream stand?

In the middle...

Where to put the second stand?

Right next to it?

Does the first player always have an advantage (cover more customers)?
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Propagation Studies

Here?

AL
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Always first mover advantage?

Here yes:
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Always first mover advantage?

Here?
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Always first mover advantage?

No advantage!
(But also no disadvantage.)
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Literature for further reading:

- not Peleg‘s book ©

End of lecture
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