Chapter 7

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter

1).

7.1 MIS

Definition 7.1 (Independent Set). Given an undirected Graph G = (V, E) an
independent set is a subset of nodes U C V, such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

Figure 7.2: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

71

72 CHAPTER 7. MAXIMAL INDEPENDENT SET

Remarks:

e Computing a maximum independent set (MaxIS) is a notoriously diffi-
cult problem. It is equivalent to maximum clique on the complemen-
tary graph. Both problems are NP-hard, in fact not approximable
within n2 ¢ within polynomial time.

e In this course we concentrate on the maximal independent set (MIS)
problem. Please note that MIS and MaxIS can be quite different,
indeed e.g. on a star graph there exists an MIS that is O(n) smaller
than the MaxIS (cf. Figure 7.2).

e Computing a MIS sequentially is trivial: Scan the nodes in arbitrary
order. If a node u does not violate independence, add u to the MIS.
If u violates independence, discard u. So the only question is how to
compute a MIS in a distributed way.

Algorithm 7.3 Slow MIS
Require: Node IDs
Every node v executes the following code:
1: if all neighbors of v with larger identifiers have decided not to join the MIS
then
2: v decides to join the MIS
3: end if

Remarks:

e Not surprisingly the slow algorithm is not better than the sequential
algorithm in the worst case, because there might be one single point
of activity at any time. Formally:

Theorem 7.4 (Analysis of Algorithm 7.3). Algorithm 7.3 features a time com-
plexity of O(n) and a message complexity of O(m).

Remarks:
e This is not very exciting.

e There is a relation between independent sets and node coloring (Chap-
ter 1), since each color class is an independent set, however, not nec-
essarily a MIS. Still, starting with a coloring, one can easily derive a
MIS algorithm: In the first round all nodes of the first color join the
MIS and notify their neighbors. Then, all nodes of the second color
which do not have a neighbor that is already in the MIS join the MIS
and inform their neighbors. This process is repeated for all colors.
Thus the following corollary holds:

Corollary 7.5. Given a coloring algorithm that runs in time T and needs C
colors, we can construct a MIS in time T + C.

7.2. ORIGINAL FAST MIS 73

Remarks:

e Using Theorem 1.23 and Corollary 7.5 we get a distributed determin-
istic MIS algorithm for trees (and for bounded degree graphs) with
time complexity O(log* n).

e With a lower bound argument one can show that this deterministic
MIS algorithm is asymptotically optimal for rings.

e There have been attempts to extend Algorithm 1.17 to more general
graphs, however, so far without much success. Below we present a
radically different approach that uses randomization.

7.2 Original Fast MIS

Algorithm 7.6 Fast MIS
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability ﬁ(v), where d(v) is the current
degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

e Correctness in the sense that the algorithm produces an independent
set is relatively simple: Steps 1 and 2 make sure that if a node v joins
the MIS, then v’s neighbors do not join the MIS at the same time.
Step 3 makes sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node
with the highest degree will mark itself at some point in Step 1.

e So the only remaining question is how fast the algorithm terminates.
To understand this, we need to dig a bit deeper.

Lemma 7.7 (Joining MIS). A node v joins the MIS in Step 2 with probability
Pz 4d1(v)'

Proof: Let M be the set of marked nodes in Step 1 and MIS be the set of nodes
that join the MIS in Step 2. Let H(v) be the set of neighbors of v with higher
degree, or same degree and higher identifier. Using independence of the random

74 CHAPTER 7. MAXIMAL INDEPENDENT SET

choices of v and nodes in H(v) in Step 1 we get

Plv¢ MIS|v € M] = P [thereis a node w € H(v),w € M|v € M]
= P/|there is a node w € H(v),w € M]

1

< = —

<) PweM=)] 2d(w)
weH (v) weH (v)
1 dlv) 1
S
weT (o) 2d(v) ~— 2d(v) 2

Then
PlveMIS] = PlveMISlve M]-P]| EM]>1 !
3 - ! ! =2 2d(v)

Lemma 7.8 (Good Nodes). A node v is called good if

1 1
Z 2d(w 267

weN (v)

~

where N(v) is the set of neighbors of v. Otherwise we call v a bad node. A
good node will be removed in Step 3 with probability p > 3—16.

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in Step 3 of the algorithm.

If there is a neighbor w € N(v) with degree at most 2 we are done: With
Lemma 7.7 the probability that node w joins the MIS is at least %, and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

1 1
For any neighbor w of v we have % < % Since Z m > 5 there is a
weN (v)
1 1 1
subset of neighbors S C N(v) such that 6 < Z 2d(w) < 3

wesS

We can now bound the probability that node v will be removed. Let therefore

R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

P[R] > P]thereis anode u € S,u € MIS]
> PlueMIS|— Y PluecMISand w e MIS].

uesS u,wES;uFw

v

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after

7.2. ORIGINAL FAST MIS 75

Step 1. Using P [u € M] > P [u € MIS| we get

P[R] > Y PueMIS|- > PlucM and we M|
ues u,wES;uFw
> ZP[uEMIS]—ZZP[ueM]-P[weM]
ues ueS wes
E Z4d ZZM 2(w)
ueS weS

Y

SENES

Remarks:

e We would be almost finished if we could prove that many nodes are
good in each phase. Unfortunately this is not the case: In a star-
graph, for instance, only a single node is good! We need to find a
work-around.

Lemma 7.9 (Good Edges). An edge e = (u,v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 7.10. A bad node has outdegree (number of edges pointing away from
bad node) at least twice its indegree (number of edges pointing towards bad node).

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

1 1 1 _dw) 11
> iy 2 ZS 2d(w) = 1; 2d(v) = 3 2d(v) 6

weN (v) we

which means v is good, a contradiction. O

Continuing the proof of Lemma 7.9: According to Lemma 7.10 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 7.11 (Analysis of Algorithm 7.6). Algorithm 7.6 terminates in ex-
pected time O(logn).

Proof: With Lemma 7.8 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 7.9) a constant fraction of edges will be deleted in each phase.

76 CHAPTER 7. MAXIMAL INDEPENDENT SET

More formally: With Lemmas 7.8 and 7.9 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number
of edges to be removed in a certain phase. Using linearity of expectation (cf.
Theorem 7.13) we know that E [R] > m/72, m being the total number of edges at
the start of the phase. Now let p := P [R < E[R] /2]. Bounding the expectation
yields

IN

E[R] =) P[R=r]r P[R < E[R]/2]-E[R]/2+ P[R > E[R]/2] - m

= p-E[R]/2+(1-p) -m.
Solving for p we get

m — E[R] m—E[R]/2
PEUTEREZS T m

<1-—1/144.

In other words, with probability at least 1/144 at least m /144 edges are removed
in a phase. After expected O(logm) phases all edges are deleted. Since m < n?
and thus O(logm) = O(logn) the Theorem follows. O

Remarks:

e With a bit of more math one can even show that Algorithm 7.6 ter-
minates in time O(logn) “with high probability”.

7.3 Fast MIS v2

Algorithm 7.12 Fast MIS 2
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) € [0,1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w € N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

e Correctness in the sense that the algorithm produces an independent
set is simple: Steps 1 and 2 make sure that if a node v joins the MIS,
then v’s neighbors do not join the MIS at the same time. Step 3 makes
sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node
with the globally smallest value will always join the MIS, hence there
is progress.

e So the only remaining question is how fast the algorithm terminates.
To understand this, we need to dig a bit deeper.

7.3. FAST MIS V2 7

e Our proof will rest on a simple, yet powerful observation about ex-
pected values of random variables that may not be independent:

Theorem 7.13 (Linearity of Expectation). Let X;, i =1,...,k denote random

variables, then
S| =Yem)

Proof. Tt is sufficient to prove E [X + Y] = E [X]+E [Y] for two random variables
X and Y, because then the statement follows by induction. Since

E

PI(X.Y)=(r,y)] = P[X=u] PV =yX =4]
= PV =y PIX=alY =y
we get that
EX+Y] = > PIXY)=(zy) (z+y)
(X,Y)=(z,y)
= Y Y PX=a] PY=ylX=a] -z
X=z Y=y
+ Y Y Py =y|-P[X=2z[Y =y y
Y=y X=x
= Y PX=al-a+)Y P[Y=yly
X=x Y=y
= E[X]+E[Y].
O
Remarks:

e How can we prove that the algorithm only needs O(logn) phases in
expectation? It would be great if this algorithm managed to remove a
constant fraction of nodes in each phase. Unfortunately, it does not.

e Instead we will prove that the number of edges decreases quickly.
Again, it would be great if any single edge was removed with constant
probability in Step 3. But again, unfortunately, this is not the case.

e Maybe we can argue about the expected number of edges to be re-
moved in one single phase? Let’s see: A node v enters the MIS with
probability 1/(d(v)+ 1), where d(v) is the degree of node v. By doing
so, not only are v’s edges removed, but indeed all the edges of v’s
neighbors as well — generally these are much more than d(v) edges. So
there is hope, but we need to be careful: If we do this the most naive
way, we will count the same edge many times.

e How can we fix this? The nice observation is that it is enough to
count just some of the removed edges. Given a new MIS node v and
a neighbor w € N(v), we count the edges only if r(v) < r(z) for all
x € N(w). This looks promising. In a star graph, for instance, only
the smallest random value can be accounted for removing all the edges
of the star.

78 CHAPTER 7. MAXIMAL INDEPENDENT SET

Lemma 7.14 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof. To simplify the notation, at the start of our phase, the graph is simply
G = (V,E). In addition, to ease presentation, we replace each undirected edge
{v,w} by the two directed edges (v, w) and (w,v).

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for all
neighbors w € N(v). If in addition we have r(v) < r(z) for all neighbors z of a
neighbor w of v, we call this event (v — w). The probability of event (v — w)
is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number of nodes
adjacent to v or w (or both). As v joins the MIS, all (directed) edges (w,x)
with z € N(w) will be removed; there are d(w) of these edges.

We now count the removed edges. Whether we remove the edges adjacent
to w because of event (v — w) is a random variable X(,_,,. If event (v — w)
occurs, X, has the value d(w), if not it has the value 0. For each undirected
edge {v, w} we have two such variables, X(v—ow) and X (). Due to Theorem
7.13, the expected value of the sum X of all these random variables is at least

EX] = Y EXeowl+EXwoe)
{v,w}ekE
= Y PEvent (v—w)]-d(w) + P[Event (w — v)] - d(v)
{v,w}eE
d(w) d(v)
= {U§EE (o) +d(w) d(w) + d(v)
= Y 1=|E|
{v,w}ekE

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not double count any edge removals, as a directed edge
(w, z) can only be removed by an event (v — w). The event (v — w) inhibits
a concurrent event (v/ — w) since r(v) < r(v') for all v € N(w). We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed. O

Remarks:

e This enables us to follow a bound on the expected running time of
Algorithm 7.12 quite easily.

Theorem 7.15 (Expected running time of Algorithm 7.12). Algorithm 7.12
terminates after at most 3log,;sm +1 € O(logn) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3-1+42/3-1/4 =1/2. This contradicts Lemma 7.14.

Hence, in expectation at least every third phase is “good” and removes at
least a quarter of the edges. To get rid of all but two edges we need log, /3 m

7.3. FAST MIS V2 79

good phases in expectation. The last two edges will certainly be removed in the
next phase. Hence a total of 3log, /3 m + 1 phases are enough in expectation.

Remarks:

e Sometimes one expects a bit more of an algorithm: Not only should
the expected time to terminate be good, but the algorithm should
always terminate quickly. As this is impossible in randomized algo-
rithms (after all, the random choices may be “unlucky” all the time!),
researchers often settle for a compromise, and just demand that the
probability that the algorithm does not terminate in the specified
time can be made absurdly small. For our algorithm, this can be de-
duced from Lemma 7.14 and another standard tool, namely Chernoff’s
Bound.

Definition 7.16 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1 — 1/n°
for any choice of ¢ > 1. Here ¢ may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 7.17 (Chernoff’s Bound). Let X = Zle X, be the sum of k inde-
pendent 0 — 1 random variables. Then Chernoft’s bound states that w.h.p.

X~ E[X]| € O (logn + V/E[XTlogn) .

Corollary 7.18 (Running Time of Algorithm 7.12). Algorithm 7.12 terminates
w.h.p. in O(logn) time.

Proof: In Theorem 7.15 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C; and Cs, let us check
after C1logn + Cy € O(logn) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C7 logn+ Cs)
many. Now we look at the random variable X = ZiC:lllog "€ y. where the X;
are independent 0 — 1 variables being one with exactly probability p. Certainly,
if X is at least = with some probability, then the probability that we have
2 good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C;
and Cy are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that | X —E[X]| < E[X]/2, implying
X > E[X]/2. Choosing Cy large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(logn) phases.

Remarks:

e The algorithm can be improved. Drawing random real numbers in
each phase for instance is not necessary. One can achieve the same by
sending only a total of O(logn) random (and as many non-random)
bits over each edge.

e One of the main open problems in distributed computing is whether
one can beat this logarithmic time, or at least achieve it with a deter-
ministic algorithm.

e Let’s turn our attention to applications of MIS next.

80 CHAPTER 7. MAXIMAL INDEPENDENT SET

7.4 Applications

Definition 7.19 (Matching). Given a graph G = (V, E) a matching is a subset
of edges M C E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

e In contrast to MaxIS, a maximum matching can be found in polyno-
mial time, and is also easy to approximate, since any maximal match-
ing is a 2-approximation.

e An independent set algorithm is also a matching algorithm: Let G =
(V, E) be the graph for which we want to construct the matching.
The so-called line graph G’ is defined as follows: for every edge in G
there is a node in G’; two nodes in G’ are connected by an edge if
their respective edges in G are adjacent. A (maximal) independent
set in the line graph G’ is a (maximal) matching in the original graph
G, and vice versa. Using Algorithm 7.12 directly produces a O(logn)
bound for maximal matching.

e More importantly, our MIS algorithm can also be used for vertex
coloring (Problem 1.1):

Algorithm 7.20 General Graph Coloring

1: Given a graph G = (V, E) we virtually build a graph G' = (V' E’) as
follows:

2: Every node v € V' clones itself d(v) +1 times (vo, . .., vqw) € V'), d(v) being
the degree of v in G.

3: The edge set E’ of G’ is as follows:

4: First all clones are in a clique: (v;,v;) € E’, for allv € V and all 0 < i <
j < d(v)

5: Second all i clones of neighbors in the original graph G are connected:
(us,v;) € E', for all (u,v) € E and all 0 <4 < min(d(u), d(v)).

6: Now we simply run (simulate) the fast MIS Algorithm 7.12 on G’.

7: If node v; is in the MIS in G’, then node v gets color i.

Theorem 7.21 (Analysis of Algorithm 7.20). Algorithm 7.20 (A + 1)-colors
an arbitrary graph in O(logn) time, with high probability, A being the largest
degree in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G’ has O (n2) nodes and the exponent
becomes a constant factor when applying the logarithm.

7.4. APPLICATIONS 81

Remarks:
e This solves our open problem from Chapter 1.1!

e Together with Corollary 7.5 we get quite close ties between (A + 1)-
coloring and the MIS problem.

e Computing a MIS also solves another graph problem on graphs of
bounded independence.

Definition 7.22 (Bounded Independence). G = (V, E) is of bounded indepen-
dence, if for every node v € V' the largest independent set in the neighborhood
N (v) is bounded by a constant.

Definition 7.23 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

e In general, finding a dominating set less than factor logn larger than
an minimum dominating set is NP-hard.

e Any MIS is a dominating set: if a node was not covered, it could join
the independent set.

e In general a MIS and a minimum dominating sets have not much in
common (think of a star). For graphs of bounded independence, this
is different.

Corollary 7.24. On graphs of bounded independence, a constant-factor approx-
imation to a minimum dominating set can be found in time O(logn) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from [is in M or adjacent to a node in M. Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, |I| € O(|M]). Therefore, we can compute
a MIS with Algorithm 7.12 and output it as the dominating set, which takes
O(logn) rounds w.h.p.

Chapter Notes

As we have seen, a MIS can be used in versatile ways. Indeed, it was once argued
that the cells of a fly compute a MIS to decide where to grow hair [AAB*11].
The fast MIS algorithm is a simplified version of an algorithm by Luby [Lub86].
Around the same time there have been a number of other papers dealing with the
same or related problems, for instance by Alon, Babai, and Itai [ABI&6], or by
Israeli and Itai [II86]. The analysis presented in Section 7.2 takes elements of all
these papers, and from other papers on distributed weighted matching [WWO04].
The analysis in the book [Pel00] by David Peleg is different, and only achieves
O(log®n) time. The new MIS variant (with the simpler analysis) of Section
7.3 is by Métivier, Robson, Saheb-Djahromi and Zemmari [MRSDZ11]. With

82 CHAPTER 7. MAXIMAL INDEPENDENT SET

some adaptations, the algorithms [Lub86, MRSDZ11] only need to exchange
a total of O(logn) bits per node, which is asymptotically optimum, even on
unoriented trees [KSOS06]. However, the distributed time complexity for MIS
is still somewhat open, as the strongest lower bounds are Q(y/logn) or Q(log A)
[KMWO04]. Recent research regarding the MIS problem focused on improving
the O(logn) time complexity for special graph classes, for instances growth-
bounded graphs [SWO08] or trees [LW11]. There are also results that depend
on the degree of the graph [BE09, Kuh09]. Deterministic MIS algorithms are
still far from the lower bounds, as the best deterministic MIS algorithm takes
20(VIogn) time [PS96]. The maximum matching algorithm mentioned in the
remarks is the blossom algorithm by Jack Edmonds.

Bibliography

[AAB*11] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama
Barkai, and Ziv Bar-Joseph. A Biological Solution to a Fundamen-
tal Distributed Computing Problem. volume 331, pages 183-185.
American Association for the Advancement of Science, January
2011.

[ABI86] Noga Alon, Lészlé Babai, and Alon Itai. A Fast and Simple
Randomized Parallel Algorithm for the Maximal Independent Set
Problem. J. Algorithms, 7(4):567-583, 1986.

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta-+1)-
coloring in linear (in delta) time. In 41st ACM Symposium On
Theory of Computing (STOC), 2009.

[I186] Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel
Algorithm for Maximal Matching. Inf. Process. Lett., 22(2):77-80,
1986.

[KMWO04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC), July 2004.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Chris-
tian Schindelhauer. Distributed coloring in O(y/log n) Bit Rounds.
In 20th international conference on Parallel and Distributed Pro-
cessing (IPDPS), 2006.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), 2009.

[Lub86] Michael Luby. A Simple Parallel Algorithm for the Maximal Inde-
pendent Set Problem. SIAM J. Comput., 15(4):1036-1053, 1986.

[LW11] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In PODC,
pages 41-48, 2011.

BIBLIOGRAPHY 83

[MRSDZ11]

[Pel00]

[PS96]

[SWOS]

[WWO04]

Yves Métivier, John Michael Robson, Nasser Saheb-Djahromi, and
Akka Zemmari. An optimal bit complexity randomized distributed
MIS algorithm. Distributed Computing, 23(5-6):331-340, 2011.

David Peleg. Distributed Computing: a Locality-Sensitive Ap-
proach. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

Alessandro Panconesi and Aravind Srinivasan. On the Complexity
of Distributed Network Decomposition. J. Algorithms, 20(2):356—
374, 1996.

Johannes Schneider and Roger Wattenhofer. A Log-Star Distrib-
uted Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada, August 2008.

Mirjam Wattenhofer and Roger Wattenhofer. Distributed
Weighted Matching. In 18th Annual Conference on Distributed
Computing (DISC), Amsterdam, Netherlands, October 2004.

