Chapter 28

Routing Strikes Back

28.1 Butterfly

Let’s first assume that all the sources are on level 0, all destinations are on level
d of a d-dimensional butterfly.

Algorithm 28.1 Greedy Butterfly Routing
The unique path from a source on level 0 to a destination on level d with
d hops is the greedy path. In the greedy butterfly routing algorithm each
packet is constrained to follow its greedy path.

Remarks:

e In the bit-reversal permutation routing problem, the destination of a
packet is the bit-reversed address of the source. With d = 3 you can
see that both source (000,0) and source (001,0) route through edge
(000,1..2). Will the contention grow with higher dimension? Yes!
Choose an odd d, then all the sources (0...0b(11y/2 - .- bd—1,0) will
route through edge (00..0, (d — 1)/2...(d + 1)/2). You can choose the
bits b; arbitrarily. There are 2(4+1)/2 bit combinations, which is / n/2
for n = 27 sources.

On the good side, this contention is also a guaranteed time bound, as
the following theorem shows.

Theorem 28.2 (Analysis). The greedy butterfly algorithm terminates in O(y/n)
steps.

Proof. For simplicity we assume that d is odd. An edge on level I (from a
node on level I to a node on level 7 + 1) has at most 2! sources, and at most
2¢=1=1 ({estinations. Therefore the number of paths through an edge on level
1 is bounded by n; = 2min(d=l=1) = A packet can therefore be delayed at most
n; — 1 times on level . Summing up over all levels, a packet is delayed at most

d—1 (d-1)/2 d—1 (d—1)/2 (d—3)/2
Su= 3w+ > om= Y 2+ > 2 <322 = 0(va).
1=0 1=0 I=(d+1)/2 1=0 1=0

311

312 CHAPTER 28. ROUTING STRIKES BACK

steps. O

Remarks:

e The bit-reversed routing is therefore asymptotically a worst-case ex-
ample.

However, one that requires square-root queues. When being limited
to constant queue sizes the greedy algorithm can be forced to use ©(n)
steps for some permutations.

A routing problem where all the sources are on level 0 and all the
destinations are on level d is called an end-to-end routing problem.
Surprisingly, solving an arbitrary routing problem on a butterfly (or
any hypercubic network) is often not harder.

In the next section we show that there is general square-root lower
bound for “greedy” algorithms for any constant-degree graph. (In
other words, our optimal greedy mesh routing algorithm of Chapter 4
was only possible because the mesh has such a bad diameter...)

28.2 Oblivious Routing

Definition 28.3 (Oblivious). A routing algorithm is oblivious if the path taken
by each packet depends only on source and destination of the packet (and not
on other packets, or the congestion encountered).

Theorem 28.4 (Lower Bound). Let G be a graph with n nodes and (mazimum,)
degree d. Let A be any oblivious routing algorithm. Then there is a one-to-one
routing problem for which A will need at least \/n/2d steps.

Proof. Since A is oblivious, the path from node v to node v is P, ,; A can be
specified by n? paths. We must find k one-to-one paths that all use the same
edge e. Then we can proof that A takes at least k/2 steps.

Let’s look at the n — 1 paths to destination node v. For any integer k let
Sk(v) be the set of edges in G where k or more of these paths pass through
them. Also, let S (v) be the nodes incident to Si(v). Since there are two
nodes incident to each edge |S} (v)| < 2|Sk(v)|. In the following we assume that
k < (n—1)/d; then v € S} (v), hence |S}(v)| > 0.

We have

n— |55 (v)
because every node v not in Sy (v) is a start of a path P, , that enters S;(v)
from outside. In particular, for any node u ¢ S} (v) there is an edge (w,w’) in
P, that enters S} (v). Since the edge (w,w’) ¢ Si(v), there are at most (k—1)
starting nodes u for edge (w,w’). Also there are at most (d — 1) edges adjacent
to w’ that are not in Sy (v). We get

n < (k—1)(d—1)]Sp()] + [Sp()] <2[1+ (k= 1)(d — 1)]|Sk(v)| < 2kd|Sk(v)

Thus, |Sk(v)] > 575. We set k = /n/d, and sum over all n nodes:

< (k=1D(d-1)ISi)|

n3/2

2
n
S — —
D I1Sk)] 2 2kd 2

veV

28.3. OFFLINE ROUTING 313

Since there are at most nd/2 edges in G, this means that there is an edge e for
at least
n3/2/2
nd/2

=Vn/d=k

different values of v.

Since edge e is in at least k different paths in each set Sy (v) we can construct
a one-to-one permutation problem where edge e is used /n/d times (directed:
\/n/2d contention). O

Remarks:

e In fact, as many as (y/n/d)! one-to-one routing problems can be con-
structed with this method.

e The proof can be extended to the case where the one-to-one routing

problem consists of R route requests. The lower bound is then Q(Tf}%)

There is a node that needs to route Q(y/n/d) packets.

e The lower bound can be extended to randomized oblivious algo-
rithms... however, if we are allowed to use randomization, the lower
bound gets much weaker. In fact, one can use Valiant’s trick also in
the butterfly: In a first phase, we route each packet on the greedy
path to a random destination on level d, in the second phase on the
same row back to level 0, and in a third phase on the greedy path
to the destination. This way we can escape the bad one-to-one prob-
lems with high probability. (There are much more good one-to-one
problems than bad one-to-one problems.) One can show that with
this trick one can route any one-to-one end-to-end routing problem in
asymptotically optimal O(logn) time (with high probability).

o If a randomized algorithm fails (takes too long), simply re-run it. It
will be likely to succeed then. On the other hand, if a deterministic
algorithm fails in some rare instance, re-running it will not help!

28.3 Offline Routing

There are a variety of other aspects in routing. In this section we study one of
them to gain further insights.

Definition 28.5 (Offline Routing). We are given a routing problem (graph
and set of routing requests). An offline routing algorithm is a (not distributed)
algorithm that sees the whole input (the routing problem,).

Remarks:

e Offline routing is worth being studied because the same communica-
tion pattern might appear whenever you run your (important!) (par—
allel) algorithm.

e In offline routing, path selection and scheduling can be studied inde-
pendently.

314 CHAPTER 28. ROUTING STRIKES BACK

Definition 28.6 (Path Selection). We are given a routing problem (a graph and
a set of routing requests). A path selection algorithm selects a path (a route) for
each request.

Remarks:

e Path selection is efficient if the paths are “short” and do not interfere
if they do not need to. Formally, this can be defined by congestion
and dilation (see below).

e For some routing problems, path selection is easy. If the graph is a
tree, for example, the best path between two nodes is the direct path.
(Every route from a source to a destination includes at least all the
links of the shortest path.)

Definition 28.7 (Dilation, Congestion). The dilation of a path selection is the
length of a mazimum path. The contention of an edge is the number of paths that
use the edge. The congestion of a path selection is the load of a most contended
edge.

Remarks:
e A path selection should minimize congestion and dilation.

e Networking researchers have defined the “flow number” which is de-
fined as the minimum max(congestion, dilation) over all possible path
selections.

e Alternatively, congestion can be defined with directed edges, or nodes.

Definition 28.8 (Scheduling). We are given a set of source-destination paths.
A scheduling algorithm specifies which messages traverse which link at which
time step (for an appropriate model).

Remarks:

e The most popular model is store-and-forward (with small queues).
Other popular models have no queues at all: e.g. hot-potato routing
or direct routing (where the source might delay the injection of a
packet; once a packet is injected however, it will go to the destination
without stop.)

Lemma 28.9 (Lower Bound). Scheduling takes at least Q(C + D) steps, where
C' is the congestion and D is the dilation.

Remarks:
e We aim for algorithms that are competitive with the lower bound. (As

opposed to algorithms that finish in O(f(n)) time; C' 4+ D and n are
generally not comparable.)

Theorem 28.11 (Analysis). Algorithm 28.10 terminates in 2C + D steps.

BIBLIOGRAPHY 315

Algorithm 28.10 Direct Tree Routing

We are given a tree, and a set of routing requests. (Since the graph is a tree
each route request will take the direct path between source and destination;
in other words, path selection is trivial.) Choose an arbitrary root r. Now
sort all packets using the following order (breaking ties arbitrarily): packet
p comes before packet ¢ if the path of p reaches a node closer to r then the
path of ¢. Now scan all packets in this order, and for each packet greedily
assign its injection time to be the first that does not cause a conflict with any
previous packet.

Proof. A packet p first goes up, then down the tree; thus turning at node u.
Let e, and eq be the “up” resp. “down” edge on the path adjacent to u. The
injection time of packet p is only delayed by packets that traverse e, or eq (if it
contends with a packet g on another edge, and packet ¢ has not a lower order,
then it contends also on e, or e;). Since congestion is C, there are at most
2C — 2 many packets ¢. Thus the algorithm terminates after 2C' + D steps. [

Remarks:

o [Leighton, Maggs, Rao 1988] have shown the existence of an O(C+ D)
schedule for any routing problem (on any graph!) using the Lovasz
Local Lemma. Later the result was made more accessible by [Leighton,
Maggs, Richa 1996] and others. Still it is too hard for this course...

Chapter Notes

Sce [BHS5, LMRSS, LM95, KKT91].

Bibliography

[BH85] Allan Borodin and John E. Hopcroft. Routing, Merging, and Sorting
on Parallel Models of Computation. J. Comput. Syst. Sci., 30(1):130~
145, 1985.

[KKT91] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight
Bounds for Oblivious Routing in the Hypercube. Mathematical Sys-
tems Theory, 24(4):223-232, 1991.

[LM95] T. Leighton and B. Maggs. Fast algorithms for finding
O(congestion+dilation) packet routing schedules. In Proceedings of
the 28th Hawaii International Conference on System Sciences, HICSS
’95, pages 555—, Washington, DC, USA, 1995. IEEE Computer Soci-
ety.

[LMRR8S8] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Universal
Packet Routing Algorithms (Extended Abstract). In FOCS, pages
256-269, 1988.

