
Chapter 25

Multi-Core Computing

This chapter is based on the article“Distributed Computing and the Multicore
Revolution” by Maurice Herlihy and Victor Luchangco. Thanks!

25.1 Introduction

In the near future, nearly all computers, ranging from supercomputers to cell
phones, will be multiprocessors. It is harder and harder to increase processor
clock speed (the chips overheat), but easier and easier to cram more processor
cores onto a chip (thanks to Moore’s Law). As a result, uniprocessors are giving
way to dual-cores, dual-cores to quad-cores, and so on.

However, there is a problem: Except for “embarrassingly parallel” applica-
tions, no one really knows how to exploit lots of cores.

25.1.1 The Current State of Concurrent Programming

In today’s programming practice, programmers typically rely on combinations
of locks and conditions, such as monitors, to prevent concurrent access by differ-
ent threads to the same shared data. While this approach allows programmers
to treat sections of code as “atomic”, and thus simplifies reasoning about inter-
actions, it suffers from a number of severe shortcomings.

• Programmers must decide between coarse-grained locking, in which a large
data structure is protected by a single lock (usually implemented using
operations such as test-and-set or compare and swap(CAS)), and fine-
grained locking, in which a lock is associated with each component of
the data structure. Coarse-grained locking is simple, but permits little or
no concurrency, thereby preventing the program from exploiting multiple
processing cores. By contrast, fine-grained locking is substantially more
complicated because of the need to ensure that threads acquire all nec-
essary locks (and only those, for good performance), and because of the
need to avoid deadlocks, when acquiring multiple locks. The decision is
further complicated by the fact that the best engineering solution may be
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Algorithm Move(Element e, Table from, Table to)

1: if from.find(e) then
2: to.insert(e)
3: from.delete(e)
4: end if

platform-dependent, varying with different machine sizes, workloads, and
so on, making it difficult to write code that is both scalable and portable.

• Conventional locking provides poor support for code composition and
reuse. For example, consider a lock-based hash table that provides atomic
insert and delete methods. Ideally, it should be easy to move an ele-
ment atomically from one table to another, but this kind of composition
simply does not work. If the table methods synchronize internally, then
there is no way to acquire and hold both locks simultaneously. If the ta-
bles export their locks, then modularity and safety are compromised. For
a concrete example, assume we have two hash tables T1 and T2 storing
integers and using internal locks only. Every number is only inserted into
a table, if it is not already present, i.e., multiple occurrences are not per-
mitted. We want to atomically move elements using two threads between
the tables using Algorithm Move. If we have external locks, we must pay
attention to avoid deadlocks etc.

Table T1 is contains 1 and T2 is empty
Time Thread 1 Thread 2

Move(1,T1,T2) Move(1,T2,T1)
1 T1.find(1) delayed
2 T2.insert(1)
3 delayed T2.find(1)
4 T1.insert(1)
5 T1.delete(1) T2.delete(1)

both T1 and T2 are empty

• Such basic issues as the mapping from locks to data, that is, which locks
protect which data, and the order in which locks must be acquired and
released, are all based on convention, and violations are notoriously diffi-
cult to detect and debug. For these and other reasons, today’s software
practices make lock-based concurrent programs (too) difficult to develop,
debug, understand, and maintain.

The research community has addressed this issue for more than fifteen
years by developing nonblocking algorithms for stacks, queues and other
data structures. These algorithms are subtle and difficult. For example,
the pseudo code of a delete operation for a (non-blocking) linked list,
recently presented at a conference, contains more than 30 lines of code,
whereas a delete procedure for a (non-concurrent, used only by one thread)
linked list can be written with 5 lines of code.
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25.2 Transactional Memory

Recently the transactional memory programming paradigm has gained mo-
mentum as an alternative to locks in concurrent programming. Rather than
using locks to give the illusion of atomicity by preventing concurrent access
to shared data with transactional memory, programmers designate regions of
code as transactions, and the system guarantees that such code appears to exe-
cute atomically. A transaction that cannot complete is aborted—its effects are
discarded—and may be retried. Transactions have been used to build large,
complex and reliable database systems for over thirty years; with transactional
memory, researchers hope to translate that success to multiprocessor systems.
The underlying system may use locks or nonblocking algorithms to implement
transactions, but the complexity is hidden from the application programmer.
Proposals exist for implementing transactional memory in hardware, in soft-
ware, and in schemes that mix hardware and software. This area is growing at
a fast pace.

More formally, a transaction is defined as follows:

Definition 25.1. A transaction in transactional memory is characterized by
three properties (ACI):

• Atomicity: Either a transaction finishes all its operations or no operation
has an effect on the system.

• Consistency: All objects are in a valid state before and after the transac-
tion.

• Isolation: Other transactions cannot access or see data in an intermediate
(possibly invalid) state of any parallel running transaction.

Remarks:

• For database transactions there exists a fourth property called dura-
bility: If a transaction has completed, its changes are permanent, i.e.,
even if the system crashes, the changes can be recovered. In princi-
ple, it would be feasible to demand the same thing for transactional
memory, however this would mean that we had to use slow hard discs
instead of fast DRAM chips...

• Although transactional memory is a promising approach for concur-
rent programming, it is not a panacea, and in any case, transactional
programs will need to interact with other (legacy) code, which may
use locks or other means to control concurrency.

• One major challenge for the adoption of transactional memory is that
it has no universally accepted specification. It is not clear yet how to
interact with I/O and system calls should be dealt with. For instance,
imagine you print a news article. The printer job is part of a transac-
tion. After printing half the page, the transaction gets aborted. Thus
the work (printing) is lost. Clearly, this behavior is not acceptable.

• From a theory perspective we also face a number of open problems.
For example:
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– System model: An abstract model for a (shared-memory) multi-
processor is needed that properly accounts for performance. In
the 80s, the PRAM model became a standard model for parallel
computation, and the research community developed many ele-
gant parallel algorithms for this model. Unfortunately, PRAM
assume that processors are synchronous, and that memory can
be accessed only by read and write operations. Modern computer
architectures are asynchronous and they provide additional op-
erations such as test-and-set. Also, PRAM did not model the
effects of contention nor the performance implications of multi-
level caching, assuming instead a flat memory with uniform-cost
access. More realistic models have been proposed to account for
the costs of interprocess communication, but these models still
assume synchronous processors with only read and write access
to memory.

– How to resolve conflicts? Many transactional memory implemen-
tations “optimistically” execute transactions in parallel. Con-
flicts between two transactions intending to modify the same
memory at the same time are resolved by a contention man-
ager. A contention manager decides whether a transaction con-
tinues, waits or is aborted. The contention management policy
of a transactional memory implementation can have a profound
effect on its performance, and even its progress guarantees.

25.3 Contention Management

After the previous introduction of transactional memory, we look at different
aspects of contention management from a theoretical perspective. We start with
a description of the model.

We are given a set of transactions S := {T1, ..., Tn} sharing up to s resources
(such as memory cells) that are executed on n threads. Each thread runs on a
separate processor/core P1, ..., Pn. For simplicity, each transaction T consists
of a sequence of tT operations. An operation requires one time unit and can
be a write access of a resource R or some arbitrary computation.1 To perform
a write, the written resource must be acquired exclusively (i.e., locked) before
the access. Additionally, a transaction must store the original value of a written
resource. Only one transaction can lock a resource at a time. If a transaction
A attempts to acquire a resource, locked by B, then A and B face a conflict.
If multiple transactions concurrently attempt to acquire an unlocked resource,
an arbitrary transaction A will get the resource and the others face a conflict
with A. A contention manager decides how to resolve a conflict. Contention
managers operate in a distributed fashion, that is to say, a separate instance of a
contention manager is available for every thread and they operate independently.
Contention managers can make a transaction wait (arbitrarily long) or abort.
An aborted transaction undoes all its changes to resources and frees all locks
before restarting. Freeing locks and undoing the changes can be done with one
operation. A successful transaction finishes with a commit and simply frees

1Reads are of course also possible, but are not critical because they do not attempt to
modify data.
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all locks. A contention manager is unaware of (potential) future conflicts of a
transaction. The required resources might also change at any time.

The quality of a contention manager is characterized by different properties:

• Throughput: How long does it take until all transactions have committed?
How good is our algorithm compared to an optimal?

Definition 25.2. The makespan of the set S of transactions is the time
interval from the start of the first transaction until all transactions have
committed.

Definition 25.3. The competitive ratio is the ratio of the makespans of
the algorithm to analyze and an optimal algorithm.

• Progress guarantees: Is the system deadlock-free? Does every transaction
commit in finite time?

Definition 25.4. We look at three levels of progress guarantees:

– wait freedom (strongest guarantee): all threads make progress in a
finite number of steps

– lock freedom: one thread makes progress in a finite number of steps

– obstruction freedom (weakest): one thread makes progress in a finite
number of steps in absence of contention (no other threads compete
for the same resources)

Remarks:

• For the analysis we assume an oblivious adversary. It knows the algo-
rithm to analyze and chooses/modifies the operations of transactions
arbitrarily. However, the adversary does not know the random choices
(of a randomized algorithm). The optimal algorithm knows all deci-
sions of the adversary, i.e. first the adversary must say how transac-
tions look like and then the optimal algorithm, having full knowledge
of all transaction, computes an (optimal) schedule.

• Wait freedom implies lock freedom. Lock freedom implies obstruction
freedom.

• Here is an example to illustrate how needed resources change over
time: Consider a dynamic data structure such as a balanced tree. If a
transaction attempts to insert an element, it must modify a (parent)
node and maybe it also has to do some rotations to rebalance the
tree. Depending on the elements of the tree, which change over time,
it might modify different objects. For a concrete example, assume that
the root node of a binary tree has value 4 and the root has a (left)
child of value 2. If a transaction A inserts value 5, it must modify the
pointer to the right child of the root node with value 4. Thus it locks
the root node. If A gets aborted by a transaction B, which deletes
the node with value 4 and commits, it will attempt to lock the new
root node with value 2 after its restart.
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• There are also systems, where resources are not locked exclusively.
All we need is a correct serialization (analogous to transactions in
database systems). Thus a transaction might speculatively use the
current value of a resource, modified by an uncommitted transaction.
However, these systems must track dependencies to ensure the ACI
properties of a transaction (see Definition 25.1). For instance, assume
a transaction T1 increments variable x from 1 to 2. Then transaction
T2 might access x and assume its correct value is 2. If T1 commits ev-
erything is fine and the ACI properties are ensured, but if T1 aborts, T2

must abort too, since otherwise the atomicity property was violated.

• In practice, the number of concurrent transactions might be much
larger than the number of processors. However, performance may de-
crease with an increasing number of threads since there is time wasted
to switch between threads. Thus, in practice, load adaption schemes
have been suggested to limit the number of concurrent transactions
close to (or even below) the number of cores.

• In the analysis, we will assume that the number of operations is fixed
for each transaction. However, the execution time of a transaction (in
the absence of contention) might also change, e.g., if data structures
shrink, less elements have to be considered. Nevertheless, often the
changes are not substantial, i.e., only involve a constant factor. Fur-
thermore, if an adversary can modify the duration of a transaction
arbitrarily during the execution of a transaction, then any algorithm
must make the exact same choices as an optimal algorithm: Assume
two transactions T0 and T1 face a conflict and an algorithm Alg de-
cides to let T0 wait (or abort). The adversary could make the opposite
decision and let T0 proceed such that it commits at time t0. Then it
sets the execution time T0 to infinity, i.e., tT0 = ∞ after t0. Thus,
the makespan of the schedule for algorithm Alg is unbounded though
there exists a schedule with bounded makespan. Thus the competitive
ratio is unbounded.

Problem complexity

In graph theory, coloring a graph with as few colors as possible is known to be
hard problem. A (vertex) coloring assigns a color to each vertex of a graph such
that no two adjacent vertices share the same color. It was shown that computing
an optimal coloring given complete knowledge of the graph is NP-hard. Even
worse, computing an approximation within a factor of χ(G)logχ(G)/25, where
χ(G) is the minimal number of colors needed to color the graph, is NP-hard as
well.

To keep things simple, we assume for the following theorem that resource
acquisition takes no time, i.e., as long as there are no conflicts, transactions get
all locks they wish for at once. In this case, there is an immediate connection to
graph coloring, showing that even an offline version of contention management,
where all potential conflicts are known and do not change over time, is extremely
hard to solve.
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Theorem 25.5. If the optimal schedule has makespan k and resource acquisi-
tion takes zero time, it is NP-hard to compute a schedule of makespan less than
klog k/25, even if all conflicts are known and transactions do not change their
resource requirements.

Proof. We will prove the claim by showing that any algorithm finding a schedule
taking k′ < k(log k)/25 can be utilized to approximate the chromatic number of

any graph better than χ(G)
log χ(G)

25 .
Given the graph G = (V,E), define that V is the set of transactions and

E is the set of resources. Each transaction (node) v ∈ V needs to acquire a
lock on all its resources (edges) {v, w} ∈ E, and then computes something for
exactly one round. Obviously, this “translation” of a graph into our scheduling
problem does not require any computation at all.

Now, if we knew a χ(G)-coloring of G, we could simply use the fact that the
nodes sharing one color form an independent set and execute all transactions
of a single color in parallel and the colors sequentially. Since no two neighbors
are in an independent set and resources are edges, all conflicts are resolved.
Consequently, the makespan k is at most χ(G).

On the other hand, the makespan k must be at least χ(G): Since each trans-
action (i.e., node) locks all required resources (i.e., adjacent edges) for at least
one round, no schedule could do better than serve a (maximum) independent
set in parallel while all other transactions wait. However, by definition of the
chromatic number χ(G), V cannot be split into less than χ(G) independent sets,
meaning that k ≥ χ(G). Therefore k = χ(G).

In other words, if we could compute a schedule using k′ < k(log k)/25 rounds
in polynomial time, we knew that

χ(G) = k ≤ k′ < k(log k)/25 = χ(G)(logχ(G))/25.

Remarks:

• The theorem holds for a central contention manager, knowing all
transactions and all potential conflicts. Clearly, the online problem,
where conflicts remain unknown until they occur, is even harder. Fur-
thermore, the distributed nature of contention managers also makes
the problem even more difficult.

• If resource acquisition does not take zero time, the connection be-
tween the problems is not a direct equivalence. However, the same
proof technique shows that it is NP-hard to compute a polynomial
approximation, i.e., k′ ≤ kc for some constant c ≥ 1.

Deterministic contention managers

Theorem 25.5 showed that even if all conflicts are known, one cannot produce
schedules which makespan get close to the optimal without a lot of computation.
However, we target to construct contention managers that make their decisions
quickly without knowing conflicts in advance. Let us look at a couple of con-
tention managers and investigate their throughput and progress guarantees.
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• A first naive contention manger: Be aggressive! Always abort the trans-
action having locked the resource. Analysis: The throughput might be
zero, since a livelock is possible. But the system is still obstruction free.
Consider two transactions consisting of three operations. The first opera-
tion of both is a write to the same resource R. If they start concurrently,
they will abort each other infinitely often.

• A smarter contention manager: Approximate the work done. Assume
before a start (also before a restart after an abort) a transaction gets
a unique timestamp. The older transaction, which is believed to have
already performed more work, should win the conflict.

Analysis: Clearly, the oldest transaction will always run until commit
without interruption. Thus we have lock-freedom, since at least one trans-
action makes progress at any time. In other words, at least one processor
is always busy executing a transaction until its commit. Thus, the bound
says that all transactions are executed sequentially. How about the com-
petitive ratio? We have s resources and n transactions starting at the
same time. For simplicity, assume every transaction Ti needs to lock at
least one resource for a constant fraction c of its execution time tTi . Thus,
at most s transactions can run concurrently from start until commit with-
out (possibly) facing a conflict (if s+ 1 transactions run at the same time,
at least two of them lock the same resource). Thus, the makespan of an

optimal contention manager is at least:
∑n
i=0

c·tTi
s . The makespan of our

timestamping algorithm is at most the duration of a sequential execution,
i.e. the sum of the lengths of all transactions:

∑n
i=0 tTi . The competitive

ratio is:

∑n
i=0 tTi∑n
i=0

c·tTi
s

=
s

c
= O(s).

Remarks:

– Unfortunately, in most relevant cases the number of resources
is larger than the number of cores, i.e., s > n. Thus, our
timestamping algorithm only guarantees sequential execution,
whereas the optimal might execute all transactions in parallel.

Are there contention managers that guarantee more than sequential execu-
tion, if a lot of parallelism is possible? If we have a powerful adversary, that can
change the required resources after an abort, the analysis is tight. Though we
restrict to deterministic algorithms here, the theorem also holds for randomized
contention managers.

Theorem 25.6. Suppose n transactions start at the same time and the adver-
sary is allowed to alter the resource requirement of any transaction (only) after
an abort, then the competitive ratio of any deterministic contention manager is
Ω(n).

Proof. Assume we have n resources. Suppose all transactions consist of two
operations, such that conflicts arise, which force the contention manager to
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abort one of the two transactions T2i−1, T2i for every i < n/2. More precisely,
transaction T2i−1 writes to resource R2i−1 and to R2i afterwards. Transaction
T2i writes to resource R2i and to R2i−1 afterwards. Clearly, any contention
manager has to abort n/2 transactions. Now the adversary tells each transaction
which did not finish to adjust its resource requirements and write to resource
R0 as their first operation. Thus, for any deterministic contention manager the
n/2 aborted transactions must execute sequentially and the makespan of the
algorithm becomes Ω(n).

The optimal strategy first schedules all transactions that were aborted and in
turn aborts the others. Since the now aborted transactions do not change their
resource requirements, they can be scheduled in parallel. Hence the optimal
makespan is 4, yielding a competitive ratio of Ω(n).

Remarks:

• The prove can be generalized to show that the ratio is Ω(s) if s re-
sources are present, matching the previous upper bound.

• But what if the adversary is not so powerful, i.e., a transaction has a
fixed set of needed resources?

The analysis of algorithm timestamp is still tight. Consider the din-
ing philosophers problem: Suppose all transactions have length n and
transaction i requires its first resource Ri at time 1 and its second
Ri+1 (except Tn, which only needs Rn) at time n − i. Thus, each
transaction Ti potentially conflicts with transaction Ti−1 and trans-
action Ti+1. Let transaction i have the ith oldest timestamp. At time
n− i transaction i+1 with i ≥ 1 will get aborted by transaction i and
only transaction 1 will commit at time n. After every abort transac-
tion i restarts 1 time unit before transaction i− 1. Since transaction
i−1 acquires its second resource i−1 time units before its termination,
transaction i−1 will abort transaction i at least i−1 times. After i−1
aborts transaction i may commit. The total time until the algorithm
is done is bounded by the time transaction n stays in the system, i.e.,
at least

∑n
i=1(n−i) = Ω(n2). An optimal schedule requires only O(n)

time: First schedule all transactions with even indices, then the ones
with odd indices.

• Let us try to approximate the work done differently. The transaction,
which has performed more work should win the conflict. A transaction
counts the number of accessed resources, starting from 0 after every
restart. The transaction which has acquired more resources, wins the
conflict. In case both have accessed the same number of resources,
the transaction having locked the resource may proceed and the other
has to wait.

Analysis: Deadlock possible: Transaction A and B start concurrently.
Transaction A writes to R1 as its first operation and to R2 as its
second operation. Transaction B writes to the resources in opposite
order.
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Randomized contention managers

Though the lower bound of the previous section (Theorem 25.6) is valid for both
deterministic and randomized schemes, let us look at a randomized approach:

Each transaction chooses a random priority in [1, n]. In case of a conflict, the
transaction with lower priority gets aborted. (If both conflicting transactions
have the same priority, both abort.)

Additionally, if a transaction A was aborted by transaction B, it waits until
transaction B committed or aborted, then transaction A restarts and draws a
new priority.

Analysis: Assume the adversary cannot change the resource requirements,
otherwise we cannot show more than a competitive ratio of n, see Theorem
25.6. Assume if two transactions A and B (potentially) conflict (i.e., write to
the same resource), then they require the resource for at least a fraction c of their
running time. We assume a transaction T potentially conflicts with dT other
transactions. Therefore, if a transaction has highest priority among these dT
transactions, it will abort all others and commit successfully. The chance that
for a transaction T a conflicting transaction chooses the same random number
is (1 − 1/n)dT > (1 − 1/n)n ≈ 1/e. The chance that a transaction chooses the
largest random number and no other transaction chose this number is thus at
least 1/dT · 1/e. Thus, for any constant c ≥ 1, after choosing e · dT · c · lnn
random numbers the chance that transaction T has commited successfully is

1−
(

1− 1

e · dT

)e·dT ·c·lnn
≈ 1− e−c lnn = 1− 1

nc
.

Assuming that the longest transaction takes time tmax, within that time a
transaction either commits or aborts and chooses a new random number. The
time to choose e · tmax · c · lnn numbers is thus at most e · tmax · dT · c · lnn =
O(tmax · dT · lnn). Therefore, with high probability each transaction makes
progress within a finite amount of time, i.e., our algorithm ensures wait freedom.
Furthermore, the competitive ratio of our randomized contention manger for the
previously considered dining philosophers problem is w.h.p. only O(lnn), since
any transaction only conflicts with two other transactions.

Chapter Notes

See [GWK09, Att08, SW09, HSW10].
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