
Chapter 18

Authenticated Agreement

Byzantine nodes are able to lie about their inputs as well as received messages.
Can we detect certain lies and limit the power of byzantine nodes? Possibly,
the authenticity of messages may be validated using signatures?

18.1 Agreement with Authentication

Definition 18.1 (Signature). If a node never signs a message, then no correct
node ever accepts that message. We denote a message msg(x) signed by node u
with msg(x)u.

Remarks:

• Algorithm 18.2 shows an agreement protocol for binary inputs relying
on signatures. We assume there is a designated “primary” node p.
The goal is to decide on p’s value.
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Algorithm 18.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ 1, . . . , f + 1 do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

Theorem 18.3. Algorithm 18.2 can tolerate f < n byzantine failures while
terminating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then
p broadcasts value(1)p in the first round, which will trigger all correct nodes
to decide for 1. If p’s input is 0, there is no signed message value(1)p, and no
node can decide for 1.

If primary p is byzantine, we need all correct nodes to decide for the same
value for the algorithm to be correct. Let us assume that p convinces a correct
node v that its value is 1 in round i with i < f + 1. We know that v received
i signed messages for value 1. Then, v will broadcast i+ 1 signed messages for
value 1, which will trigger all correct nodes to also decide for 1. If p tries to
convince some node v late (in round i = f + 1), v must receive f + 1 signed
messages. Since at most f nodes are byzantine, at least one correct node u
signed a message value(1)u in some round i < f + 1, which puts us back to the
previous case.

Remarks:

• The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem 17.20.

• Using signatures, Algorithm 18.2 solves consensus for any number of
failures! Does this contradict Theorem 17.12? Recall that in the proof
of Theorem 17.12 we assumed that a byzantine node can distribute
contradictory information about its own input. If messages are signed,
correct nodes can detect such behavior – a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

• Does Algorithm 18.2 satisfy any of the validity conditions introduced
in Section 17.1? No! A byzantine primary can dictate the decision
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value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f + 1 primary nodes. Either 0 or 1 will occur at least f + 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < n

2 byzantine nodes.

• In reality, a primary will usually be correct. If so, Algorithm 18.2 only
needs two rounds! Can we make it work with arbitrary inputs? Also,
relying on synchrony limits the practicality of the protocol. What if
messages can be lost or the system is asynchronous?

• Zyzzyva uses authenticated messages to achieve state replication, as
in Definition 15.8. It is designed to run fast when nodes run correctly,
and it will slow down to fix failures!

18.2 Zyzzyva

Definition 18.4 (View). A view V describes the current state of a replicated
system, enumerating the 3f + 1 replicas. The view V also marks one of the
replicas as the primary p.

Definition 18.5 (Command). If a client wants to update (or read) data, it
sends a suitable command c in a Request message to the primary p. Apart
from the command c itself, the Request message also includes a timestamp t.
The client signs the message to guarantee authenticity.

Definition 18.6 (History). The history h is a sequence of commands c1, c2, . . .
in the order they are executed by Zyzzyva. We denote the history up to ck with
hk.

Remarks:

• In Zyzzyva, the primary p is used to order commands submitted by
clients to create a history h.

• Apart from the globally accepted history, node u may also have a local
history, which we denote as hu or huk .

Definition 18.7 (Complete command). If a command completes, it will remain
in its place in the history h even in the presence of failures.

Remarks:

• As long as clients wait for the completion of their commands, clients
can treat Zyzzyva like one single computer even if there are up to f
failures.
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In the Absence of Failures

Algorithm 18.8 Zyzzyva: No failures

1: At time t client u wants to execute command c
2: Client u sends request R = Request(c,t)u to primary p
3: Primary p appends c to its local history, i.e., hp = (hp, c)
4: Primary p sends OR = OrderedRequest(hp, c, R)p to all replicas
5: Each replica r appends command c to local history hr = (hr, c) and checks

whether hr = hp

6: Each replica r runs command ck and obtains result a
7: Each replica r sends Response(a,OR)r to client u
8: Client u collects the set S of received Response(a,OR)r messages
9: Client u checks if all histories hr are consistent

10: if |S| = 3f + 1 then
11: Client u considers command c to be complete
12: end if

Remarks:

• Since the client receives 3f+1 consistent responses, all correct replicas
have to be in the same state.

• Only three communication rounds are required for the command c to
complete.

• Note that replicas have no idea which commands are considered com-
plete by clients! How can we make sure that commands that are
considered complete by a client are actually executed? We will see in
Theorem 18.23.

• Commands received from clients should be ordered according to time-
stamps to preserve the causal order of commands.

• There is a lot of optimization potential. For example, including the en-
tire command history in most messages introduces prohibitively large
overhead. Rather, old parts of the history that are agreed upon can be
truncated. Also, sending a hash value of the remainder of the history
is enough to check its consistency across replicas.

• What if a client does not receive 3f + 1 Response(a,OR)r messages?
A byzantine replica may omit sending anything at all! In practice,
clients set a timeout for the collection of Response messages. Does
this mean that Zyzzyva only works in the synchronous model? Yes
and no. We will discuss this in Lemma 18.26 and Lemma 18.27.
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Byzantine Replicas

Algorithm 18.9 Zyzzyva: Byzantine Replicas (append to Algorithm 18.8)

1: if 2f + 1 ≤ |S| < 3f + 1 then
2: Client u sends Commit(S)u to all replicas
3: Each replica r replies with a LocalCommit(S)r message to u
4: Client u collects at least 2f + 1 LocalCommit(S)r messages and considers

c to be complete
5: end if

Remarks:

• If replicas fail, a client u may receive less than 3f + 1 consistent re-
sponses from the replicas. Client u can only assume command c to
be complete if all correct replicas r eventually append command c to
their local history hr.

Definition 18.10 (Commit Certificate). A commit certificate S contains 2f+1
consistent and signed Response(a,OR)r messages from 2f + 1 different replicas
r.

Remarks:

• The set S is a commit certificate which proves the execution of the
command on 2f + 1 replicas, of which at least f + 1 are correct. This
commit certificate S must be acknowledged by 2f + 1 replicas before
the client considers the command to be complete.

• Why do clients have to distribute this commit certificate to 2f + 1
replicas? We will discuss this in Theorem 18.21.

• What if |S| < 2f + 1, or what if the client receives 2f + 1 messages
but some have inconsistent histories? Since at most f replicas are
byzantine, the primary itself must be byzantine! Can we resolve this?

Byzantine Primary

Definition 18.11 (Proof of Misbehavior). Proof of misbehavior of some node
can be established by a set of contradicting signed messages.

Remarks:

• For example, if a client u receives two Response(a,OR)r messages that
contain inconsistent OR messages signed by the primary, client u can
prove that the primary misbehaved. Client u broadcasts this proof of
misbehavior to all replicas r which initiate a view change by broad-
casting a IHatePrimaryr message to all replicas.
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Algorithm 18.12 Zyzzyva: Byzantine Primary (append to Algorithm 18.9)

1: if |S| < 2f + 1 then
2: Client u sends the original R = Request(c,t)u to all replicas
3: Each replica r sends a ConfirmRequest(R)r message to p
4: if primary p replies with OR then
5: Replica r forwards OR to all replicas
6: Continue as in Algorithm 18.8, Line 5
7: else
8: Replica r initiates view change by broadcasting IHatePrimaryr to all

replicas
9: end if

10: end if

Remarks:

• A faulty primary can slow down Zyzzyva by not sending out the
OrderedRequest messages in Algorithm 18.8, repeatedly escalating
to Algorithm 18.12.

• Line 5 in the Algorithm is necessary to ensure liveness. We will discuss
this in Theorem 18.27.

• Again, there is potential for optimization. For example, a replica
might already know about a command that is requested by a client. In
that case, it can answer without asking the primary. Furthermore, the
primary might already know the message R requested by the replicas.
In that case, it sends the old OR message to the requesting replica.

Safety

Definition 18.13 (Safety). We call a system safe if the following condition
holds: If a command with sequence number j and a history hj completes, then
for any command that completed earlier (with a smaller sequence number i < j),
the history hi is a prefix of history hj.

Remarks:

• In Zyzzyva a command can only complete in two ways, either in Al-
gorithm 18.8 or in Algorithm 18.9.

• If a system is safe, complete commands cannot be reordered or drop-
ped. So is Zyzzyva so far safe?

Lemma 18.14. Let ci and cj be two different complete commands. Then ci
and cj must have different sequence numbers.

Proof. If a command c completes in Algorithm 18.8, 3f + 1 replicas sent a
Response(a,OR)r to the client. If the command c completed in Algorithm 18.9,
at least 2f + 1 replicas sent a Response(a,OR)r message to the client. Hence, a
client has to receive at least 2f + 1 Response(a,OR)r messages.

Both ci and cj are complete. Therefore there must be at least 2f+1 replicas
that responded to ci with a Response(a,OR)r message. But there are also at least
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2f + 1 replicas that responded to cj with a Response(a,OR)r message. Because
there are only 3f + 1 replicas, there is at least one correct replica that sent a
Response(a,OR)r message for both ci and cj . A correct replica only sends one
Response(a,OR)r message for each sequence number, hence the two commands
must have different sequence numbers.

Lemma 18.15. Let ci and cj be two complete commands with sequence numbers
i < j. The history hi is a prefix of hj.

Proof. As in the proof of Lemma 18.14, there has to be at least one correct
replica that sent a Response(a,OR)r message for both ci and cj .

A correct replica r that sent a Response(a,OR)r message for ci will only
accept cj if the history for cj provided by the primary is consistent with the
local history of replica r, including ci.

Remarks:

• A byzantine primary can cause the system to never complete any
command. Either by never sending any messages or by inconsistently
ordering client requests. In this case, replicas have to replace the
primary.

View Changes

Definition 18.16 (View Change). In Zyzzyva, a view change is used to replace
a byzantine primary with another (hopefully correct) replica. View changes are
initiated by replicas sending IHatePrimaryr to all other replicas. This only
happens if a replica obtains a valid proof of misbehavior from a client or after a
replica fails to obtain an OR message from the primary in Algorithm 18.12.

Remarks:

• How can we safely decide to initiate a view change, i.e. demote a
byzantine primary? Note that byzantine nodes should not be able to
trigger a view change!

Algorithm 18.17 Zyzzyva: View Change Agreement

1: All replicas continuously collect the set H of IHatePrimaryr messages
2: if a replica r received |H| > f messages or a valid ViewChange message

then
3: Replica r broadcasts ViewChange(Hr,hr,Srl )r
4: Replica r stops participating in the current view
5: Replica r switches to the next primary “p = p+ 1”
6: end if
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Remarks:

• The f + 1 IHatePrimaryr messages in set H prove that at least one
correct replica initiated a view change. This proof is broadcast to all
replicas to make sure that once the first correct replica stopped acting
in the current view, all other replicas will do so as well.

• Srl is the most recent commit certificate that the replica obtained
in the ending view as described in Algorithm 18.9. Srl will be used
to recover the correct history before the new view starts. The local
histories hr are included in the ViewChange(Hr,hr,Srl )r message such
that commands that completed after a correct client received 3f + 1
responses from replicas can be recovered as well.

• In Zyzzyva, a byzantine primary starts acting as a normal replica after
a view change. In practice, all machines eventually break and rarely
fix themselves after that. Instead, one could consider to replace a
byzantine primary with a fresh replica that was not in the previous
view.

Algorithm 18.18 Zyzzyva: View Change Execution

1: The new primary p collects the set C of ViewChange(Hr,hr,Srl )r messages
2: if new primary p collected |C| ≥ 2f + 1 messages then
3: New primary p sends NewView(C)p to all replicas
4: end if

5: if a replica r received a NewView(C)p message then
6: Replica r recovers new history hnew as shown in Algorithm 18.20
7: Replica r broadcasts ViewConfirm(hnew)r message to all replicas
8: end if

9: if a replica r received 2f + 1 ViewConfirm(hnew)r messages then
10: Replica r accepts hr = hnew as the history of the new view
11: Replica r starts participating in the new view
12: end if

Remarks:

• Analogously to Lemma 18.15, commit certificates are ordered. For
two commit certificates Si and Sj with sequence numbers i < j, the
history hi certified by Si is a prefix of the history hj certified by Sj .

• Zyzzyva collects the most recent commit certificate and the local his-
tory of 2f + 1 replicas. This information is distributed to all replicas,
and used to recover the history for the new view hnew.

• If a replica does not receive the NewView(C)p or the ViewConfirm(hnew)r
message in time, it triggers another view change by broadcasting
IHatePrimaryr to all other replicas.
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• How is the history recovered exactly? It seems that the set of histo-
ries included in C can be messy. How can we be sure that complete
commands are not reordered or dropped?
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Figure 18.19: The structure of the data reported by different replicas in C.
Commands up to the last commit certificate Sl were completed in either Algo-
rithm 18.8 or Algorithm 18.9. After the last commit certificate Sl there may be
commands that completed at a correct client in Algorithm 18.8. Algorithm 18.20
shows how the new history hnew is recovered such that no complete commands
are lost.

Algorithm 18.20 Zyzzyva: History Recovery

1: C = set of 2f + 1 ViewChange(Hr,hr,Sr)r messages in NewView(C)p
2: R = set of replicas included in C
3: Sl = most recent commit certificate Srl reported in C
4: hnew = history hl contained in Sl
5: k = l + 1, next sequence number
6: while command ck exists in C do
7: if ck is reported by at least f + 1 replicas in R then
8: Remove replicas from R that do not support ck
9: hnew = (hnew, ck)

10: end if
11: k = k + 1
12: end while
13: return hnew

Remarks:

• Commands up to Sl are included into the new history hnew.

• If at least f+1 replicas share a consistent history after the last commit
certificate Sl, also the commands after that are included.

• Even if f + 1 correct replicas consistently report a command c after
the last commit certificate Sl, c may not be considered complete by
a client, e.g., because one of the responses to the client was lost.
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Such a command is included in the new history hnew. When the
client retries executing c, the replicas will be able to identify the same
command c using the timestamp included in the client’s request, and
avoid duplicate execution of the command.

• Can we be sure that all commands that completed at a correct client
are carried over into the new view?

Lemma 18.21. The globally most recent commit certificate Sl is included in C.

Proof. Any two sets of 2f+1 replicas share at least one correct replica. Hence, at
least one correct replica which acknowledged the most recent commit certificate
Sl also sent a LocalCommit(Sl)r message that is in C.

Lemma 18.22. Any command and its history that completes after Sl has to be
reported in C at least f + 1 times.

Proof. A command c can only complete in Algorithm 18.8 after Sl. Hence, 3f+1
replicas sent a Response(a,OR)r message for c. C includes the local histories of
2f + 1 replicas of which at most f are byzantine. As a result, c and its history
is consistently found in at least f + 1 local histories in C.

Lemma 18.23. If a command c is considered complete by a client, command
c remains in its place in the history during view changes.

Proof. We have shown in Lemma 18.21 that the most recent commit certificate
is contained in C, and hence any command that terminated in Algorithm 18.9
is included in the new history after a view change. Every command that com-
pleted before the last commit certificate Sl is included in the history as a result.
Commands that completed in Algorithm 18.8 after the last commit certificate
are supported by at least f + 1 correct replicas as shown in Lemma 18.22. Such
commands are added to the new history as described in Algorithm 18.20. Algo-
rithm 18.20 adds commands sequentially until the histories become inconsistent.
Hence, complete commands are not lost or reordered during a view change.

Theorem 18.24. Zyzzyva is safe even during view changes.

Proof. Complete commands are not reordered within a view as described in
Lemma 18.15. Also, no complete command is lost or reordered during a view
change as shown in Lemma 18.23. Hence, Zyzzyva is safe.

Remarks:

• So Zyzzyva correctly handles complete commands even in the presence
of failures. We also want Zyzzyva to make progress, i.e., commands
issued by correct clients should complete eventually.

• If the network is broken or introduces arbitrarily large delays, com-
mands may never complete.

• Can we be sure commands complete in periods in which delays are
bounded?
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Definition 18.25 (Liveness). We call a system live if every command eventu-
ally completes.

Lemma 18.26. Zyzzyva is live during periods of synchrony if the primary is
correct and a command is requested by a correct client.

Proof. The client receives a Response(a,OR)r message from all correct replicas.
If it receives 3f + 1 messages, the command completes immediately in Algo-
rithm 18.8. If the client receives fewer than 3f + 1 messages, it will at least
receive 2f + 1, since there are at most f byzantine replicas. All correct replicas
will answer the client’s Commit(S)u message with a correct LocalCommit(S)r
message after which the command completes in Algorithm 18.9.

Lemma 18.27. If, during a period of synchrony, a request does not complete
in Algorithm 18.8 or Algorithm 18.9, a view change occurs.

Proof. If a command does not complete for a sufficiently long time, the client
will resend the R = Request(c,t)u message to all replicas. After that, if a
replica’s ConfirmRequest(R)r message is not answered in time by the primary,
it broadcasts an IHatePrimaryr message. If a correct replica gathers f + 1
IHatePrimaryr messages, the view change is initiated. If no correct replica col-
lects more than f IHatePrimaryr messages, at least one correct replica received
a valid OrderedRequest(hp, c, R)p message from the primary which it forwards
to all other replicas. In that case, the client is guaranteed to receive at least
2f + 1 Response(a,OR)r messages from the correct replicas and can complete
the command by assembling a commit certificate.

Remarks:

• If the newly elected primary is byzantine, the view change may never
terminate. However, we can detect if the new primary does not assem-
ble C correctly as all contained messages are signed. If the primary
refuses to assemble C, replicas initiate another view change after a
timeout.

Chapter Notes

Algorithm 18.2 was introduced by Dolev et al. [DFF+82] in 1982. Byzantine
fault tolerant state machine replication (BFT) is a problem that gave rise to
various protocols. Castro and Liskov [MC99] introduced the Practical Byzantine
Fault Tolerance (PBFT) protocol in 1999, applications such as Farsite [ABC+02]
followed. This triggered the development of, e.g., Q/U [AEMGG+05] and HQ
[CML+06]. Zyzzyva [KAD+07] improved on performance especially in the case
of no failures, while Aardvark [CWA+09] improved performance in the presence
of failures. Guerraoui at al. [GKQV10] introduced a modular system which
allows to more easily develop BFT protocols that match specific applications in
terms of robustness or best case performance.

This chapter was written in collaboration with Pascal Bissig.
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