
Chapter 13

Stabilization

A large branch of research in distributed computing deals with fault-tolerance.
Being able to tolerate a considerable fraction of failing or even maliciously be-
having (“Byzantine”) nodes while trying to reach consensus (on e.g. the output
of a function) among the nodes that work properly is crucial for building reli-
able systems. However, consensus protocols require that a majority of the nodes
remains non-faulty all the time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself ?

13.1 Self-Stabilization

Definition 13.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

• What kind of transient failures can we tolerate? An adversary can
crash nodes, or make nodes behave Byzantine. Indeed, temporarily
an adversary can do harm in even worse ways, e.g. by corrupting the
volatile memory of a node (without the node noticing – not unlike
the movie Memento), or by corrupting messages on the fly (without
anybody noticing). However, as all failures are transient, eventually
all nodes must work correctly again, that is, crashed nodes get res-
urrected, Byzantine nodes stop being malicious, messages are being
delivered reliably, and the memory of the nodes is secure.

• Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables
in the volatile random access memory (RAM).

147



148 CHAPTER 13. STABILIZATION

Definition 13.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

Remarks:

• Self-stabilization enables a distributed system to recover from a tran-
sient fault regardless of its nature. A self-stabilizing system does not
have to be initialized as it eventually (after convergence) will behave
correctly.

• One of the first self-stabilizing algorithms was Dijkstra’s token ring
network. A token ring is an early form of a local area network where
nodes are arranged in a ring, communicating by a token. The sys-
tem is correct if there is exactly one token in the ring. Let’s have
a look at a simple solution. Given an oriented ring, we simply call
the clockwise neighbor parent (p), and the counterclockwise neigh-
bor child (c). Also, there is a leader node v0. Every node v is in a
state S(v) ∈ {0, 1, . . . , n}, perpetually informing its child about its
state. The token is implicitly passed on by nodes switching state.
Upon noticing a change of the parent state S(p), node v executes the
following code:

Algorithm 13.3 Self-stabilizing Token Ring

1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if
5: else
6: S(v) := S(p)
7: end if

Theorem 13.4. Algorithm 13.3 stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after all faults already have happened
(at time t0, however starting in an arbitrary state).

Every node apart from leader v0 will always attain the state of its parent.
It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time t0. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time t0.

The leader will increase its state possibly multiple times without reaching
stability, however, at some point the leader will reach state s, a state that no
other node had at time t0. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s+ 1 (mod n) until every node (including its parent) has s.

After stabilization, there will always be only one node changing its state,
i.e., the system remains in a legitimate state.



13.1. SELF-STABILIZATION 149

Remarks:

• Although one might think the time complexity of the algorithm is
quite bad, it is asymptotically optimal.

• It can be a lot of fun designing self-stabilizing algorithms. Let us try
to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 7):

Algorithm 13.5 Self-stabilizing MIS

Require: Node IDs
Every node v executes the following code:

1: do atomically
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do

Remarks:

• Note that the main idea of Algorithm 13.5 is from Algorithm 7.3,
Chapter 7.

• As long as some nodes are faulty, anything can happen: Faulty nodes
may for instance decide to join the MIS, but report to their neighbors
that they did not join the MIS. Similarly messages may be corrupted
during transport. As soon as the system (nodes, messages) is correct,
however, the system will converge to a MIS. (The arguments are the
same as in Chapter 7).

• Self-stabilizing algorithms always run in an infinite loop, because tran-
sient failures can hit the system at any time. Without the infinite loop,
an adversary can always corrupt the solution “after” the algorithm
terminated.

• The problem of Algorithm 13.5 is its time complexity, which may be
linear in the number of nodes. This is not very exciting. We need
something better! Since Algorithm 13.5 was just the self-stabilizing
variant of the slow MIS Algorithm 7.3, maybe we can hope to “self-
stabilize” some of our fast algorithms from Chapter 7?

• Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy.
We present the general transformation below.

Theorem 13.6 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k
time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.



150 CHAPTER 13. STABILIZATION

Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k phases. In phase i, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node u sends its messages of phase i to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Liu. (In the very first phase, node
u initializes its local variables with L1

u.) The message sent from node u to node
v in phase i is denoted by mi

u,v. Since the algorithm A is deterministic, node u

can compute its local variables Liu and messages mi
u,∗ of phase i from its state

of earlier phases, by simply applying functions fL and fm. In particular,

Liu = fL(u, Li−1
u ,mi−1

∗,u ), for i > 1, and (13.1)

mi
u,v = fm(u, v, Liu), for i ≥ 1. (13.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L1

u, . . . , L
k
u as well

as all messages received m1
∗,u, . . . ,m

k
∗,u in two tables in RAM. For simplicity,

each node u also stores all the sent messages m1
u,∗, . . . ,m

k
u,∗ in a third table. If

a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value ⊥ (“unknown”). Initially, all entries
in the table are ⊥.

Clearly, in the self-stabilizing model, an adversary can choose to change
table values at all times, and even reset these values to ⊥. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each
node u runs these two procedures constantly:

• For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithmA, that is, send the vector (m1

u,v, . . . ,m
k
u,v) to

neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (m1

v,u, . . . ,m
k
v,u).

• Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
Functions (13.1) and (13.2) respectively.

The proof is by induction. Let N i(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has not
corrupted any node in Nk(u) since time t0. At time t0 all nodes in Nk(u) will
check and correct their initialization. Following Equation (13.2), at time t0 all
nodes in Nk(u) will send the correct message entry for the first round (m1

∗,∗) to
all neighbors. Asynchronous messages take at most 1 time unit to be received
at a destination. Hence, using the induction with Equations (13.1) and (13.2)
it follows that at time t0 + i, all nodes in Nk−i(u) have received the correct
messages m1

∗,∗, . . . ,m
i
∗,∗. Consequently, at time t0 + k node u has received all

messages of local algorithm A correctly, and will compute the same result value
as in A. 2



13.1. SELF-STABILIZATION 151

Remarks:

• Using our transformation (also known as “local checking”), designing
self-stabilizing algorithms just turned from art to craft.

• As we have seen, many local algorithms are randomized. This brings
two additional problems. Firstly, one may not exactly know how long
the algorithm will take. This is not really a problem since we can
simply send around all the messages needed, until the algorithm is
finished. The transformation of Theorem 13.6 works also if nodes
just send all messages that are not ⊥. Secondly, we must be careful
about the adversary. In particular we need to restrict the adversary
such that a node can produce a reproducible sufficiently long string
of random bits. This can be achieved by storing the sufficiently long
string along with the program code in the read only memory (ROM).
Alternatively, the algorithm might not store the random bit string in
its ROM, but only the seed for a random bit generator. We need this in
order to keep the adversary from reshuffling random bits until the bits
become “bad”, and the expected (or with high probability) efficacy
or efficiency guarantees of the original local algorithm A cannot be
guaranteed anymore.

• Since most local algorithms have only a few communication rounds,
and only exchange small messages, the memory overhead of the trans-
formation is usually bearable. In addition, information can often be
compressed in a suitable way so that for many algorithms message size
will remain polylogarithmic. For example, the information of the fast
MIS algorithm (Algorithm 7.12) consists of a series of random val-
ues (one for each round), plus two boolean values per round. These
boolean values represent whether the node joins the MIS, or whether
a neighbor of the node joins the MIS. The order of the values tells in
which round a decision is made. Indeed, the series of random bits can
even be compressed just into the random seed value, and the neighbors
can compute the random values of each round themselves.

• There is hope that our transformation as well gives good algorithms
for mobile networks, that is for networks where the topology of the
network may change. Indeed, for deterministic local approximation
algorithms, this is true: If the adversary does not change the topology
of a node’s k-neighborhood in time k, the solution will locally be stable
again.

• For randomized local approximation algorithms however, this is not
that simple. Assume for example, that we have a randomized local al-
gorithm for the dominating set problem. An adversary can constantly
switch the topology of the network, until it finds a topology for which
the random bits (which are not really random because these random
bits are in ROM) give a solution with a bad approximation ratio. By
defining a weaker adversarial model, we can fix this problem. Essen-
tially, the adversary needs to be oblivious, in the sense that it cannot
see the solution. Then it will not be possible for the adversary to
restart the random computation if the solution is “too good”.



152 CHAPTER 13. STABILIZATION

• Self-stabilization is the original approach, and self-organization may
be the general theme, but new buzzwords pop up every now and
then, e.g. self-configuration, self-management, self-regulation, self-
repairing, self-healing, self-optimization, self-adaptivity, or self-protection.
Generally all these are summarized as “self-*”. One computing giant
coined the term “autonomic computing” to reflect the trend of self-
managing distributed systems.

13.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.1 In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.2 Is this process going to “stabilize” (in one way or
another)?

Remarks:

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

Eventually every citizen will either stay with the same party for the rest of her
life, or switch her opinion every day.

Theorem 13.7 (Dems & Reps). Eventually every citizen is rooting for the
same party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship as a pair of (directed) edges, one in each direction.
Let us say an edge is currently bad if the party of the advising friend differs
from the next-day’s party of the advised friend. In other words, the edge is bad
if the advised friend did not follow the advisor’s opinion (which means that the
advisor was in the minority). An edge that is not bad, is good.

Consider the out-edges of citizen u on day t, during which (say) u roots for
the Democrats. Assume that on day t, g out-edges of u are good, and b out-
edges are bad. Note that g+ b is the degree of u. Since g out-edges are good, g
friends of u root for the Democrats on day t + 1. Likewise, b friends of u root
for the Republicans on day t + 1. In other words, on the evening of day t + 1
citizen u will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.

2Assume for the sake of simplicity that everybody has an odd number of friends.



13.2. ADVANCED STABILIZATION 153

• g > b: In this case, citizen u will again root for the Democrats on day
t + 2. Note that this means, on day t + 1, exactly g in-edges of u are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t+ 1.

• g < b: In this case, citizen u will root for the Republicans on day t + 2.
Please note that on day t+1, exactly b in-edges of u are good, and exactly
g in-edges are bad. In other words, the number of bad out-edges on day
t was exactly the number of good in-edges on day t+ 1 (and vice versa).
This means that the number of bad out-edges on day t is strictly larger
than the number of bad in-edges on day t+ 1.

We can summarize these two cases by the following observation. If a citizen
u votes for the same party on day t as on day t + 2, the number of her bad
out-edges on day t is the same as the number of her bad in-edges on day t+ 1.
If a citizen u votes for different parties on the days t and t + 2, the number of
her bad out-edges on day t is strictly larger than the number of her bad in-edges
on day t+ 1.

We now account for the total number of bad edges. We denote the total
number of bad out-edges on day t with BOt and by the total number of bad
in-edges on day t with BIt. Using the analysis of the two cases, and summing
up for all citizens, we know that BOt ≥ BIt+1. Moreover, each out-edge of a
citizen is an in-edge for another citizen, hence BOt = BIt. In fact, if any citizen
switches its party from day t to t + 2, we know that the total number of bad
edges strictly decreases, i.e., BOt+1 = BIt+1 < BOt. But BO cannot decrease
forever. Once BOt+1 = BOt, every citizen u votes for the same party on day
t+2 as u voted on day t, and the system stabilizes in the sense that every citizen
will either stick with his or her party forever or flip-flop every day. 2

Remarks:

• The model can be generalized considerably by, for example, adding
weights to vertices (meaning some citizens’ opinions are more impor-
tant than others), adding weights to edges (meaning the influence be-
tween some citizens is stronger than between others), allowing loops
(citizens who consider their own current opinions as well), allowing
tie-breaking mechanisms, and even allowing different thresholds for
party changes.

• How long does it take until the system stabilizes?

• Some may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two
possible states, dead or alive. Every cell interacts with its eight neigh-
bors. In each round, the following transitions occur: Any live cell
with fewer than two live neighbors dies, as if caused by loneliness.
Any live cell with more than three live neighbors dies, as if by over-
crowding. Any live cell with two or three live neighbors lives on to
the next generation. Any dead cell with exactly three live neighbors
is “born” and becomes a live cell. The initial pattern constitutes the
“seed” of the system. The first generation is created by applying the
above rules simultaneously to every cell in the seed, births and deaths



154 CHAPTER 13. STABILIZATION

happen simultaneously, and the discrete moment at which this hap-
pens is sometimes called a tick. (In other words, each generation is
a pure function of the one before.) The rules continue to be applied
repeatedly to create further generations. John Conway figured that
these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such
Life in some sense answers an old question by John von Neumann,
whether there can be a simple machine that can build copies of itself.
In fact Life is Turing complete, that is, as powerful as any computer.

Figure 13.8: A “glider gun”. . .

Figure 13.9: . . . in action.

Chapter Notes

Self-stabilization was first introduced in a paper by Edsger W. Dijkstra in 1974
[Dij74], in the context of a token ring network. It was shown that the ring
stabilizes in time Θ(n). For his work Dijkstra received the 2002 ACM PODC
Influential Paper Award. Shortly after receiving the award he passed away.
With Dijkstra being such an eminent person in distributed computing (e.g.
concurrency, semaphores,mutual exclusion, deadlock, finding shortest paths in
graphs, fault-tolerance, self-stabilization), the award was renamed Edsger W.
Dijkstra Prize in Distributed Computing. In 1991 Awerbuch et al. showed that
any algorithm can be modified into a self-stabilizing algorithm that stabilizes in
the same time that is needed to compute the solution from scratch [APSV91].

The Republicans vs. Democrats problem was popularized by Peter Winkler,
in his column “Puzzled” [Win08]. Goles et al. already proved in [GO80] that
any configuration of any such system with symmetric edge weights will end up
in a situation where each citizen votes for the same party every second day.



BIBLIOGRAPHY 155

Winkler additionally proved that the time such a system takes to stabilize is
bounded by O(n2). Frischknecht et al. constructed a worst case graph which
takes Ω(n2/ log2 n) rounds to stabilize [FKW13]. Keller et al. generalized this
results in [KPW14], showing that a graph with symmetric edge weights stabi-
lizes in O(W (G)), where W (G) is the sum of edge weights in graph G. They
also constructed a weighted graph with exponential stabilization time. Closely
related to this puzzle is the well known Game of Life which was described by
the mathematician John Conway and made popular by Martin Gardner [Gar70].
In the Game of Life cells can be either dead or alive and change their states
according to the number of alive neighbors.

Bibliography

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
Stabilization By Local Checking and Correction. In In Proceedings
of IEEE Symposium on Foundations of Computer Science (FOCS),
1991.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):943–644, November
1974.

[FKW13] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Conver-
gence in (Social) Influence Networks. In 27th International Sympo-
sium on Distributed Computing (DISC), Jerusalem, Israel, October
2013.

[Gar70] M. Gardner. Mathematical Games: The fantastic combinations
of John Conway’s new solitaire game Life. Scientific American,
223:120–123, October 1970.

[GO80] E. Goles and J. Olivos. Periodic behavior of generalized threshold
functions. Discrete Mathematics, 30:187–189, 1980.

[KPW14] Barbara Keller, David Peleg, and Roger Wattenhofer. How even Tiny
Influence can have a Big Impact! In 7th International Conference
on Fun with Algorithms (FUN), Lipari Island, Italy, July 2014.

[Win08] P. Winkler. Puzzled. Communications of the ACM, 51(9):103–103,
August 2008.


