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where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

• From Theorem 10.17, it directly follows that all the clock synchro-
nization algorithms we studied have a global skew of Ω(D).

• Many natural algorithms manage to achieve a global clock skew of
O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer α pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer α. A pseudo-code repre-
sentation for the clock synchronization protocol α is given in Algorithm 10.18.

Algorithm 10.18 Clock synchronization α (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv := tu
5: end if
6: until done

Lemma 10.19. The clock synchronization protocol α has a local skew of Ω(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1

will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.
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Remarks:

• The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local
skew. In particular, a protocol that averages between all neighbors
is even worse than the introduced α algorithm. This algorithm has a
clock skew of Ω(D2) in the linked list, at all times.

• It was shown that the local clock skew is Θ(logD), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

• Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist.

Chapter Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers α and
β were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85a]. His work also formally introduced the syn-
chronizers α and β. Improved synchronizers that exploit inactive nodes or hy-
percube networks were presented in [AP90, PU87].

Naturally, as synchronizers are motivated by practical difficulties with local
clocks, there are plenty of real life applications. Studies regarding applications
can be found in, e.g., [SM86, Awe85b, LTC89, AP90, PU87]. Synchronizers in
the presence of network failures have been discussed in [AP88, HS94].

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].
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Chapter 11

Communication Complexity

This chapter is on “hard” problems in distributed computing. In sequential com-
puting, there are NP-hard problems which are conjectured to take exponential
time. Is there something similar in distributed computing? Using flooding/echo
(Algorithms 2.9,2.10) from Chapter 2, everything so far was solvable basically
in O(D) time, where D is the diameter of the network.

11.1 Diameter & APSP

But how do we compute the diameter itself!?! With flooding/echo, of course!

Algorithm 11.1 Naive Diameter Construction

1: all nodes compute their radius by synchronous flooding/echo
2: all nodes flood their radius on the constructed BFS tree
3: the maximum radius a node sees is the diameter

Remarks:

• Since all these phases only take O(D) time, nodes know the diameter
in O(D) time, which is asymptotically optimal.

• However, there is a problem! Nodes are now involved in n parallel
flooding/echo operations, thus a node may have to handle many and
big messages in one single time step. Although this is not strictly
illegal in the message passing model, it still feels like cheating! A
natural question is whether we can do the same by just sending short
messages in each round.

• In Definition 1.8 of Chapter 1 we postulated that nodes should send
only messages of “reasonable” size. In this chapter we strengthen the
definition a bit, and require that each message should have at most
O(log n) bits. This is generally enough to communicate a constant
number of ID’s or values to neighbors, but not enough to communicate
everything a node knows!

• A simple way to avoid large messages is to split them into small mes-
sages that are sent using several rounds. This can cause that messages
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are getting delayed in some nodes but not in others. The flooding
might not use edges of a BFS tree anymore! These floodings might not
compute correct distances anymore! On the other hand we know that
the maximal message size in Algorithm 11.1 is O(n log n). So we could
just simulate each of these “big message” rounds by n “small message”
rounds using small messages. This yields a runtime of O(nD) which
is not desirable. A third possible approach is “starting each flood-
ing/echo one after each other” and results in O(nD) in the worst case
as well.

• So let us fix the above algorithm! The key idea is to arrange the
flooding-echo processes in a more organized way: Start the flooding
processes in a certain order and prove that at any time, each node is
only involved in one flooding. This is realized in Algorithm 11.3.

Definition 11.2. (BFSv) Performing a breadth first search at node v produces
spanning tree BFSv (see Chapter 2). This takes time O(D) using small mes-
sages.

Remarks:

• A spanning tree of a graph G can be traversed in time O(n) by sending
a pebble over an edge in each time slot.

• This can be done using, e.g., a depth first search (DFS): Start at the
root of a tree, recursively visit all nodes in the following way. If the
current node still has an unvisited child, then the pebble always visits
that child first. Return to the parent only when all children have been
visited.

• Algorithm 11.3 works as follows: Given a graph G, first a leader l
computes its BFS tree BFSl. Then we send a pebble P to traverse
tree BFSl. Each time pebble P enters a node v for the first time, P
waits one time slot, and then starts a breadth first search (BFS) –
using edges in G – from v with the aim of computing the distances
from v to all other nodes. Since we start a BFSv from every node
v, each node u learns its distance to all these nodes v during the
according execution of BFSv. There is no need for an echo-process at
the end of BFSu.

Remarks:

• Having all distances is nice, but how do we get the diameter? Well, as
before, each node could just flood its radius (its maximum distance)
into the network. However, messages are small now and we need to
modify this slightly. In each round a node only sends the maximal
distance that it is aware of to its neighbors. After D rounds each
node will know the maximum distance among all nodes.

Lemma 11.4. In Algorithm 11.3, at no time a node w is simultaneously active
for both BFSu and BFSv.
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Algorithm 11.3 Computes APSP on G.

1: Assume we have a leader node l (if not, compute one first)
2: compute BFSl of leader l
3: send a pebble P to traverse BFSl in a DFS way;
4: while P traverses BFSl do
5: if P visits a new node v then
6: wait one time slot; // avoid congestion
7: start BFSv from node v; // compute all distances to v
8: // the depth of node u in BFSv is d(u, v)
9: end if

10: end while

Proof. Assume a BFSu is started at time tu at node u. Then node w will be
involved in BFSu at time tu + d(u,w). Now, consider a node v whose BFSv
is started at time tv > tu. According to the algorithm this implies that the
pebble visits v after u and took some time to travel from u to v. In particular,
the time to get from u to v is at least d(u, v), in addition at least node v is
visited for the first time (which involves waiting at least one time slot), and
we have tv ≥ tu + d(u, v) + 1. Using this and the triangle inequality, we get
that node w is involved in BFSv strictly after being involved in BFSu since
tv + d(v, w) ≥ (tu + d(u, v) + 1) + d(v, w) ≥ tu + d(u,w) + 1 > tu + d(u,w).

Theorem 11.5. Algorithm 11.3 computes APSP (all pairs shortest path) in
time O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS
“interfere” with each other, i.e. all messages can be sent on time without con-
gestion. Hence, all BFS stop at most D time slots after they were started. We
conclude that the runtime of the algorithm is determined by the time O(D) we
need to build tree BFSl, plus the time O(n) that P needs to traverse BFSl, plus
the time O(D) needed by the last BFS that P initiated. Since D ≤ n, this is
all in O(n).

Remarks:

• All of a sudden our algorithm needs O(n) time, and possibly n� D.
We should be able to do better, right?!

• Unfortunately not! One can show that computing the diameter of a
network needs Ω(n/ log n) time.

• Note that one can check whether a graph has diameter 1 by exchanging
some specific information such as degree with the neighbors. However,
already checking diameter 2 is difficult.

11.2 Lower Bound Graphs

We define a family G of graphs that we use to prove a lower bound on the
rounds needed to compute the diameter. To simplify our analysis, we assume
that (n− 2) can be divided by 8. We start by defining four sets of nodes, each
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consisting of q = q(n) := (n− 2)/4 nodes. Throughout this chapter we write [q]
as a short version of {1, . . . , q} and define:

L0 := {li | i ∈ [q] } // upper left in Figure 11.6

L1 := {l′i | i ∈ [q] } // lower left

R0 := {ri | i ∈ [q] } // upper right

R1 := {r′i | i ∈ [q] } // lower right

L0 R0

R1L1

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 11.6: The above skeleton G′ contains n = 10 nodes, such that q = 2.

We add node cL and connect it to all nodes in L0 and L1. Then we add
node cR, connected to all nodes in R0 and R1. Furthermore, nodes cL and cR
are connected by an edge. For i ∈ [q] we connect li to ri and l′i to r′i. Also we
add edges such that nodes in L0 are a clique, nodes in L1 are a clique, nodes
in R0 are a clique, and nodes in R1 are a clique. The resulting graph is called
G′. Graph G′ is the skeleton of any graph in family G.

More formally skeleton G′ = (V ′, E′) is:

V ′ := L0 ∪ L1 ∪ R0 ∪ R1 ∪ {cL, cR}

E′ :=
⋃

v ∈L0 ∪ L1

{(v, cL)} // connections to cL

∪
⋃

v ∈R0 ∪ R1

{(v, cR)} // connections to cR

∪
⋃

i∈[q]

{(li, ri), (l′i, r′i)} ∪ {(cL, cR)} // connects left to right

∪
⋃

S ∈ {L0,
L1, R0, R1}

⋃

u 6=v∈S
{(u, v)} // clique edges

To simplify our arguments, we partition G′ into two parts: Part L is the
subgraph induced by nodes L0 ∪ L1 ∪ {cL}. Part R is the subgraph induced
by nodes R0 ∪ R1 ∪ {cR}.
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Family G contains any graph G that is derived from G′ by adding any com-
bination of edges of the form (li, l

′
j) resp. (ri, r

′
j) with li ∈ L0, l′j ∈ L1, ri ∈ R0,

and r′j ∈ R1.

Part L Part R

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 11.7: The above graph G has n = 10 and is a member of family G. What
is the diameter of G?

Lemma 11.8. The diameter of a graph G = (V,E) ∈ G is 2 if and only if: For
each tuple (i, j) with i, j ∈ [q], there is either edge (li, l

′
j) or edge (ri, r

′
j) (or both

edges) in E.

Proof. Note that the distance between most pairs of nodes is at most 2. In
particular, the radius of cL resp. cR is 2. Thanks to cL resp. cR the distance
between, any two nodes within Part L resp. within Part R is at most 2.
Because of the cliques L0,L1,R0,R1, distances between li and rj resp. l′i and
r′j is at most 2.

The only interesting case is between a node li ∈ L0 and node r′j ∈ R1 (or,
symmetrically, between l′j ∈ L1 and node ri ∈ R0). If either edge (li, l

′
j) or

edge (ri, r
′
j) is present, then this distance is 2, since the path (li, l

′
j , r
′
j) or the

path (li, ri, r
′
j) exists. If neither of the two edges exist, then the neighborhood

of li consists of {cL, ri}, all nodes in L0, and some nodes in L1 \ {l′j}, and the
neighborhood of r′j consists of {cR, l′j} , all nodes in R1, and some nodes in
R0 \ {ri} (see for example Figure 11.9 with i = 2 and j = 2.) Since the two
neighborhoods do not share a common node, the distance between li and r′j is
(at least) 3.

Remarks:

• Each part contains up to q2 ∈ Θ(n2) edges not belonging to the skele-
ton.

• There are 2q + 1 ∈ Θ(n) edges connecting the left and the right part.
Since in each round we can transmit O(log n) bits over each edge
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cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 11.9: Nodes in the neighborhood of l2 are cyan, the neighborhood of r′2
is white. Since these neighborhoods do not intersect, the distance of these two
nodes is d(l2, r

′
2) > 2. If edge (l2, l

′
2) was included, their distance would be 2.

(in each direction), the bandwidth between Part L and Part R is
O(n log n).

• If we transmit the information of the Θ(n2) edges in a naive way with
a bandwidth of O(n log n), we need Ω(n/ log n) time. But maybe we
can do better?!? Can an algorithm be smarter and only send the
information that is really necessary to tell whether the diameter is 2?

• It turns out that any algorithm needs Ω(n/ log n) rounds, since the
information that is really necessary to tell that the diameter is larger
than 2 contains basically Θ(n2) bits.

11.3 Communication Complexity

To prove the last remark formally, we can use arguments from two-party com-
munication complexity. This area essentially deals with a basic version of dis-
tributed computation: two parties are given some input each and want to solve
a task on this input.

We consider two students (Alice and Bob) at two different universities con-
nected by a communication channel (e.g., via email) and we assume this channel
to be reliable. Now Alice and Bob want to check whether they received the same
problem set for homework (we assume their professors are lazy and wrote it on
the black board instead of putting a nicely prepared document online.) Do Alice
and Bob really need to type the whole problem set into their emails? In a more
formal way: Alice receives an k-bit string x and Bob another k-bit string y, and
the goal is for both of them to compute the equality function.

Definition 11.10. (Equality.) We define the equality function EQ to be:

EQ(x, y) :=

{
1 : x = y
0 : x 6= y .
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Remarks:

• In a more general setting, Alice and Bob are interested in computing a
certain function f : {0, 1}k×{0, 1}k → {0, 1} with the least amount of
communication between them. Of course they can always succeed by
having Alice send her whole k-bit string to Bob, who then computes
the function, but the idea here is to find clever ways of calculating f
with less than k bits of communication. We measure how clever they
can be as follows:

Definition 11.11. (Communication complexity CC.) The communication com-
plexity of protocol A for function f is CC(A, f) := minimum number of bits
exchanged between Alice and Bob in the worst case when using A. The commu-
nication complexity of f is CC(f) := min{CC(A, f) |A solves f}. That is the
minimal number of bits that the best protocol needs to send in the worst case.

Definition 11.12. For a given function f , we define a 2k × 2k matrix Mf

representing f . That is Mf
x,y := f(x, y).

Example 11.13. For EQ, in case k = 3, matrix MEQ looks like this:




EQ 000 001 010 011 100 101 110 111 ← x
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 1
↑ y




As a next step we define a (combinatorial) monochromatic rectangle. These
are “submatrices” of Mf which contain the same entry.

Definition 11.14. (monochromatic rectangle.) A set R ⊆ {0, 1}k × {0, 1}k is
called a monochromatic rectangle, if

• whenever (x1, y1) ∈ R and (x2, y2) ∈ R then (x1, y2) ∈ R.

• there is a fixed z such that f(x, y) = z for all (x, y) ∈ R.

Example 11.15. The first three of the following rectangles are monochromatic,
the last one is not:

R1 = {011} × {011} Example 11.13: light gray
R2 = {011, 100, 101, 110} × {000, 001} Example 11.13: gray
R3 = {000, 001, 101} × {011, 100, 110, 111} Example 11.13: dark gray
R4 = {000, 001} × {000, 001} Example 11.13: boxed

Each time Alice and Bob exchange a bit, they can eliminate columns/rows of
the matrix Mf and a combinatorial rectangle is left. They can stop communi-
cating when this remaining rectangle is monochromatic. However, maybe there
is a more efficient way to exchange information about a given bit string than
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just naively transmitting contained bits? In order to cover all possible ways of
communication, we need the following definition:

Definition 11.16. (fooling set.) A set S ⊂ {0, 1}k × {0, 1}k fools f if there is
a fixed z such that

• f(x, y) = z for each (x, y) ∈ S

• For any (x1, y1) 6= (x2, y2) ∈ S, the rectangle {x1, x2} × {y1, y2} is not
monochromatic: Either f(x1, y2) 6= z, f(x2, y1) 6= z or both 6= z.

Example 11.17. Consider S = {(000, 000), (001, 001)}. Take a look at the
non-monochromatic rectangle R4 in Example 11.15. Verify that S is indeed a
fooling set for EQ!

Remarks:

• Can you find a larger fooling set for EQ?

• We assume that Alice and Bob take turns in sending a bit. This results
in 2 possible actions (send 0/1) per round and in 2t action patterns
during a sequence of t rounds.

Lemma 11.18. If S is a fooling set for f , then CC(f) = Ω(log |S|).

Proof. We prove the statement via contradiction: fix a protocol A and assume
that it needs t < log(|S|) rounds in the worst case. Then there are 2t possible
action patterns, with 2t < |S|. Hence for at least two elements of S, let us
call them (x1, y1), (x2, y2), protocol A produces the same action pattern P .
Naturally, the action pattern on the alternative inputs (x1, y2), (x2, y1) will be
P as well: in the first round Alice and Bob have no information on the other
party’s string and send the same bit that was sent in P . Based on this, they
determine the second bit to be exchanged, which will be the same as the second
one in P since they cannot distinguish the cases. This continues for all t rounds.
We conclude that after t rounds, Alice does not know whether Bob’s input is y1

or y2 and Bob does not know whether Alice’s input is x1 or x2. By the definition
of fooling sets, either

• f(x1, y2) 6= f(x1, y1) in which case Alice (with input x1) does not know
the solution yet,

or

• f(x2, y1) 6= f(x1, y1) in which case Bob (with input y1) does not know the
solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs
after t rounds. Therefore at least log(|S|) rounds are necessary.

Theorem 11.19. CC(EQ) = Ω(k).

Proof. The set S := {(x, x) | x ∈ {0, 1}k} fools EQ and has size 2k. Now apply
Lemma 11.18.

Definition 11.20. Denote the negation of a string z by z and by x ◦ y the
concatenation of strings x and y.
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Lemma 11.21. Let x, y be k-bit strings. Then x 6= y if and only if there is an
index i ∈ [2k] such that the ith bit of x ◦ x and the ith bit of y ◦ y are both 0.

Proof. If x 6= y, there is an j ∈ [k] such that x and y differ in the jth bit.
Therefore either the jth bit of both x and y is 0, or the jth bit of x and y is
0. For this reason, there is an i ∈ [2k] such that x ◦ x and y ◦ y are both 0 at
position i.

If x = y, then for any i ∈ [2k] it is always the case that either the ith bit of
x ◦ x is 1 or the ith bit of y ◦ y (which is the negation of x ◦ x in this case) is
1.

Remarks:

• With these insights we get back to the problem of computing the
diameter of a graph and relate this problem to EQ.

Definition 11.22. Using the parameter q defined before, we define a bijective
map between all pairs x, y of q2-bit strings and the graphs in G: each pair of
strings x, y is mapped to graph Gx,y ∈ G that is derived from skeleton G′ by
adding

• edge (li, l
′
j) to Part L if and only if the (j + q · (i− 1))th bit of x is 1.

• edge (ri, r
′
j) to Part R if and only if the (j + q · (i− 1))th bit of y is 1.

Remarks:

• Clearly, Part L of Gx,y depends on x only and Part R depends on
y only.

Lemma 11.23. Let x and y be q2

2 -bit strings given to Alice and Bob.1 Then
graph G := Gx◦x,y◦y ∈ G has diameter 2 if and only if x = y.

Proof. By Lemma 11.21 and the construction of G, there is neither edge (li, l
′
j)

nor edge (ri, r
′
j) in E(G) for some (i, j) if and only if x 6= y. Applying Lemma

11.8 yields: G has diameter 2 if and only if x = y.

Theorem 11.24. Any distributed algorithm A that decides whether a graph G

has diameter 2 needs Ω
(

n
logn +D

)
time.

Proof. Computing D for sure needs time Ω(D). It remains to prove Ω
(

n
logn

)
.

Assume there is a distributed algorithm A that decides whether the diameter of

a graph is 2 in time o(n/ log n). When Alice and Bob are given q2

2 -bit inputs x
and y, they can simulate A to decide whether x = y as follows: Alice constructs
Part L of Gx◦x,y◦y and Bob constructs Part R. As we remarked, both parts
are independent of each other such that Part L can be constructed by Alice
without knowing y and Part R can be constructed by Bob without knowing x.
Furthermore, Gx◦x,y◦y has diameter 2 if and only if x = y (Lemma 11.23.)

Now Alice and Bob simulate the distributed algorithm A round by round:
In the first round, they determine which messages the nodes in their part of

1Thats why we need that n− 2 can be divided by 8.
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G would send. Then they use their communication channel to exchange all
2(2q + 1) ∈ Θ(n) messages that would be sent over edges between Part L and
Part R in this round while executing A on G. Based on this Alice and Bob
determine which messages would be sent in round two and so on. For each
round simulated by Alice and Bob, they only need to communicate O(n log n)
bits: O(log n) bits for each of O(n) messages. Since A makes a decision after
o(n/ log n) rounds, this yields a total communication of o(n2) bits. On the other
hand, Lemma 11.19 states that to decide whether x equals y, Alice and Bob

need to communicate at least Ω
(
q2

2

)
= Ω(n2) bits. A contradiction.

Remarks:

• Until now we only considered deterministic algorithms. Can one do
better using randomness?

Algorithm 11.25 Randomized evaluation of EQ.

1: Alice and Bob use public randomness. That is they both have access to the
same random bit string z ∈ {0, 1}k

2: Alice sends bit a :=
∑
i∈[k] xi · zi mod 2 to Bob

3: Bob sends bit b :=
∑
i∈[k] yi · zi mod 2 to Alice

4: if a 6= b then
5: we know x 6= y
6: end if

Lemma 11.26. If x 6= y, Algorithm 11.25 discovers x 6= y with probability at
least 1/2.

Proof. Note that if x = y we have a = b for sure.
If x 6= y, Algorithm 11.25 may not reveal inequality. For instance, for k = 2,

if x = 01, y = 10 and z = 11 we get a = b = 1. In general, let I be the set of
indices where xi 6= yi, i.e. I := {i ∈ [k] | xi 6= yi}. Since x 6= y, we know that
|I| > 0. We have

|a− b| ≡
∑

i∈I
zi ( mod 2),

and since all zi with i ∈ I are random, we get that a 6= b with probability at
least 1/2.

Remarks:

• By excluding the vector z = 0k we can even get a discovery probability
strictly larger than 1/2.

• Repeating the Algorithm 11.25 with different random strings z, the
error probability can be reduced arbitrarily.

• Does this imply that there is a fast randomized algorithm to determine
the diameter? Unfortunately not!
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• Sometimes public randomness is not available, but private randomness
is. Here Alice has her own random string and Bob has his own random
string. A modified version of Algorithm 11.25 also works with private
randomness at the cost of the runtime.

• One can prove an Ω(n/ log n) lower bound for any randomized distrib-
uted algorithm that computes the diameter. To do so one considers
the disjointness function DISJ instead of equality. Here, Alice is given
a subset X ⊆ [k] and and Bob is given a subset Y ⊆ [k] and they need
to determine whether Y ∩ X = ∅. (X and Y can be represented by
k-bit strings x, y.) The reduction is similar as the one presented above
but uses graph Gx,y instead of Gx◦x,y◦y. However, the lower bound for
the randomized communication complexity of DISJ is more involved
than the lower bound for CC(EQ).

• Since one can compute the diameter given a solution for APSP, an
Ω(n/ log n) lower bound for APSP is implied. As such, our simple
Algorithm 11.3 is almost optimal!

• Many prominent functions allow for a low communication complex-
ity. For instance, CC(PARITY ) = 2. What is the Hamming dis-
tance (number of different entries) of two strings? It is known that
CC(HAM ≥ d) = Ω(d). Also, CC(decide whether “HAM ≥ k/2 +√
k” or “HAM ≤ k/2 −

√
k”) = Ω(k), even when using randomness.

This problem is known as the Gap-Hamming-Distance.

• Lower bounds in communication complexity have many applications.
Apart from getting lower bounds in distributed computing, one can
also get lower bounds regarding circuit depth or query times for static
data structures.

• In the distributed setting with limited bandwidth we showed that
computing the diameter has about the same complexity as computing
all pairs shortest paths. In contrast, in sequential computing, it is
a major open problem whether the diameter can be computed faster
than all pairs shortest paths. No nontrivial lower bounds are known,
only that Ω(n2) steps are needed – partly due to the fact that there can
be n2 edges/distances in a graph. On the other hand the currently
best algorithm uses fast matrix multiplication and terminates after
O(n2.3727) steps.

11.4 Distributed Complexity Theory

We conclude this chapter with a short overview on the main complexity classes
of distributed message passing algorithms. Given a network with n nodes and
diameter D, we managed to establish a rich selection of upper and lower bounds
regarding how much time it takes to solve or approximate a problem. Currently
we know five main distributed complexity classes:

• Strictly local problems can be solved in constantO(1) time, e.g., a constant
approximation of a dominating set in a planar graph.
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• Just a little bit slower are problems that can be solved in log-star O(log∗ n)
time, e.g., many combinatorial optimization problems in special graph
classes such as growth bounded graphs. 3-coloring a ring takes O(log∗ n).

• A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem to be strictly local but are not, as they need O(polylog n)
time, e.g., the maximal independent set problem.

• There are problems which are global and need O(D) time, e.g., to count
the number of nodes in the network.

• Finally there are problems which need polynomial O(poly n) time, even if
the diameter D is a constant, e.g., computing the diameter of the network.

Chapter Notes

The linear time algorithm for computing the diameter was discovered inde-
pendently by [HW12, PRT12]. The presented matching lower bound is by
Frischknecht et al. [FHW12], extending techniques by [DHK+11].

Due to its importance in network design, shortest path-problems in general
and the APSP problem in particular were among the earliest studied problems
in distributed computing. Developed algorithms were immediately used, e.g.,
as early as in 1969 in the ARPANET (see [Lyn96], p.506). Routing messages
via shortest paths were extensively discussed to be beneficial in [Taj77, MS79,
MRR80, SS80, CM82] and in many other papers. It is not surprising that there
is plenty of literature dealing with algorithms for distributed APSP, but most
of them focused on secondary targets such as trading time for message com-
plexity. E.g., papers [AR78, Tou80, Che82] obtain a communication complexity
of roughly O(n ·m) bits/messages and still require superlinear runtime. Also a
lot of effort was spent to obtain fast sequential algorithms for various versions
of computing APSP or related problems such as the diameter problem, e.g.,
[CW90, AGM91, AMGN92, Sei95, SZ99, BVW08]. These algorithms are based
on fast matrix multiplication such that currently the best runtime is O(n2.3727)
due to [Wil12].

The problem sets in which one needs to distinguish diameter 2 from 4 are
inspired by a combinatorial (×, 3/2)-approximation in a sequential setting by
Aingworth et. al. [ACIM99]. The main idea behind this approximation is to
distinguish diameter 2 from 4. This part was transferred to the distributed
setting in [HW12].

Two-party communication complexity was introduced by Andy Yao in [Yao79].
Later, Yao received the Turing Award. A nice introduction to communication
complexity covering techniques such as fooling-sets is the book by Nisan and
Kushilevitz [KN97].

This chapter was written in collaboration with Stephan Holzer.
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