P
ETH y .

Distributed  fiyne®
Eidgendssische Technische Hochschule Ziirich Istribute ;“‘““I‘ .
Swiss Federal Institute of Technology Zurich Computmg “‘\ NesLan
FS 2015 Prof. R. Wattenhofer
Jara Uitto

Principles of Distributed Computing
Exercise 5

1 Shared Sum

In the lecture, we discussed how shared registers can be employed efficiently to allow each process
to announce a value to all other processes. Now we look at a different scenario: Each process p;
computes a local variable x; and we want to make the sum x := Z?zl x; available to all processes.

We want to guarantee the following: If a process updates x;, it should first ensure that x is
updated accordingly before proceeding. However, we do not want to use a large number of registers
or a huge register. In the following, you are given a single register which can store O(logn) bits
(the choice of the constant is up to you). Moreover, we assume that “x cannot become too large”,
i.e., the z; (and thus z) are of size polynomial in n and hence can be encoded using O(logn) bits.

a) Give a solution using a shared register supporting the fetch-and-add operation with a con-
stant update and access complexity. If possible, prevent both lockouts and deadlocks.

b) Give a solution using a compare-and-swap register, also with constant access complexity. If
successful, an update should need a constant number of steps (otherwise the process may
retry). Are lockouts excluded?

c) Give a solution using a load-link/store-conditional register. Compare it to the preceding
solutions.

d) Assume now that the return value of compare-and-swap is not whether the operation suc-
ceeded, but the value stored in the register after the operation. Can the problem still be
solved? Prove your claim!

2 Space Efficient Binary Tree Algorithm*

The adaptive collect algorithm using binary trees from the lecture requires to store a complete
binary tree of depth n — 1, resulting in exponential memory requirements.

Suppose the algorithm is modified the following way: Whenever a process leaves a splitter with
result left or right it flips a coin to replace this result by left or right with probability 1/2 each.
Prove that for this randomized variant of the algorithm it is with high probability' sufficient to
allocate memory polynomial in n. 2

.e., with probability at least 1 — 1/n¢ for a choosable constant ¢ > 0.
2Problems marked with an asterisk (*) are hard. Example solutions to these problems will not be provided.
However, anybody who solves such a problem will receive a prize!



