
Distributed
 Computing

FS 2015 Prof. R. Wattenhofer
Jara Uitto

Principles of Distributed Computing

Exercise 5

1 Shared Sum

In the lecture, we discussed how shared registers can be employed efficiently to allow each process
to announce a value to all other processes. Now we look at a different scenario: Each process pi
computes a local variable xi and we want to make the sum x :=

∑n
i=1 xi available to all processes.

We want to guarantee the following: If a process updates xi, it should first ensure that x is
updated accordingly before proceeding. However, we do not want to use a large number of registers
or a huge register. In the following, you are given a single register which can store O(log n) bits
(the choice of the constant is up to you). Moreover, we assume that “x cannot become too large”,
i.e., the xi (and thus x) are of size polynomial in n and hence can be encoded using O(log n) bits.

a) Give a solution using a shared register supporting the fetch-and-add operation with a con-
stant update and access complexity. If possible, prevent both lockouts and deadlocks.

b) Give a solution using a compare-and-swap register, also with constant access complexity. If
successful, an update should need a constant number of steps (otherwise the process may
retry). Are lockouts excluded?

c) Give a solution using a load-link/store-conditional register. Compare it to the preceding
solutions.

d) Assume now that the return value of compare-and-swap is not whether the operation suc-
ceeded, but the value stored in the register after the operation. Can the problem still be
solved? Prove your claim!

2 Space Efficient Binary Tree Algorithm*

The adaptive collect algorithm using binary trees from the lecture requires to store a complete
binary tree of depth n− 1, resulting in exponential memory requirements.

Suppose the algorithm is modified the following way: Whenever a process leaves a splitter with
result left or right it flips a coin to replace this result by left or right with probability 1/2 each.
Prove that for this randomized variant of the algorithm it is with high probability1 sufficient to
allocate memory polynomial in n. 2

1I.e., with probability at least 1− 1/nc for a choosable constant c > 0.
2Problems marked with an asterisk (*) are hard. Example solutions to these problems will not be provided.

However, anybody who solves such a problem will receive a prize!

