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I. Introduction of the Problem

Definitions

• A tree is a connected graph without cycles.

• A subgraph that spans all vertices of a graph

is called a spanning subgraph. 

• Among all the spanning trees of a weighted and
connected graph, the one (possibly more) with the 
least total weight is called a minimum spanning tree 
(MST).
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I. Introduction of the Problem

Definitions

• In a MST algorithm, |V| - 1 edges have to

be chosen in total. In each phase of the

algorithm, probably only a fraction of those edges are 
chosen.

• Nodes that are directly or indirectly connected using 
chosen edges only belong to the same cluster. 

•The minimum weight outgoing edge (MWOE) is the  
edge with the lowest weight among all incident edges 
leading to other clusters.
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I. Introduction of the Problem

Usage of MST

Minimize the cost associated with global

operations such as broadcasts!

Æ Minimize the message complexity:

Avoid traffic explosion by using a spanning tree (no 
cycles!)

Æ Minimize the time complexity:

If the edge weights represent the delay on the link, 
then MST minimizes the execution time.
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I. Introduction of the Problem

System Model

• The system is represented by

a complete weighted undirected graph

G=(V,E,w) where w(e) denotes the weight of edge e ∈
E and |V|=n. All edge weights are different (w.l.o.g.).

• Each node has a distinct ID of O(log n) bits. 

• Each node knows all the edges it is incident to and 
their weights.

• Each node knows about all the other nodes.

• The synchronous model is used.
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I. Introduction of the Problem

Communication advances in global rounds.

In each round, processes send messages, receive
messages and do some local computation.

The time complexity is the number of rounds until the 
computation terminates in the worst case.

The message complexity is the number of messages 
exchanged in the worst case.

Synchronous Model
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I. Introduction of the Problem

Getting a Feeling for the Problem...

How hard is it to compute the MST in a distributed 
system (assuming a fully connected graph)?

All nodes know the weights of all incident edges. If all 
nodes send this information to all other nodes, then all 
nodes suddenly have the entire picture!

Æ A simple algorithm that requires only one round!

However, that is not really interesting...

Therefore, the message size is limited to O(log n) bits!

Note that the previous algorithm requires messages of 
size O(n log n)! 
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I. Introduction of the Problem

Getting a Feeling for the Problem...

Since each node ID (and edge weight) requires 
O(log n) bits, this implies that only a constant 
number of node IDs (and edge weight) can be 
packed into a single message!

We demand that all nodes know the MST at the end 
of the computation!

How can the MST be constructed now?

Æ Let‘s look at a simple algorithm first...
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I. Introduction of the Problem

A Simple Algorithm

All MST algorithms (local or distributed) are based on 
the following lemma:

Part of 
the MST:

Lemma 1: It is always safe to add an edge to the 
spanning tree, if this edge is the MWOE of a node v.

9 15

v
cluster cluster
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I. Introduction of the Problem

A Simple Algorithm

Phase k: Code for node v in cluster F

Input: Set of chosen edges that build node clusters

1. Compute the MWOE

2. Send the MWOE to all nodes in the same cluster

3. Receive messages from the other nodes

4. If own MWOE is the lightest, then broadcast it to all other 
nodes and add this edge (Æ All nodes have to know all 
clusters after each round)

5. Receive other broadcast messages and add those edges 
as well
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I. Introduction of the Problem

A Simple Algorithm

Example

Round 1:

<w({v,u})> = <v,u,w({v,u})>

<1> <1><1>
<1>

<2><2>
<2>

<2>

1

2

3 4

5 6

1

2

3 4

5 6

Broadcast the lightest 
edge to the other nodes

Add edges and update 
clusters
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I. Introduction of the Problem

<3>

A Simple Algorithm

Example

Round 2:

<w({v,u})> = <v,u,w({v,u})>

1

2

3 4

5 6

<3>

<3><4>

<4>

Send MWOE to all nodes 
in the same cluster

1

2

3 4

5 6

Broadcast the lightest 
edge to the other nodes

<3>

<3>

<3>
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I. Introduction of the Problem

A Simple Algorithm

Example

Round 2:

<w({v,u})> = <v,u,w({v,u})>

1

2

3 4

5 6

Add edges and update 
clusters

The algorithm is obviously 
correct. Since the minimum 
cluster size doubles in each 
round, the algorithm 
computes the MST in

O(log n) rounds!

Can it be improved???

Lower bound???
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II. Related Work

Previous Results

∆ denotes the constant diameter of the graph, i.e. the 
maximum distance between any two nodes of the graph.

Ω(n1/4)O(        )∆ ≥ 3

???O(log n)∆ = 2

???O(log n)∆ = 1

Known Lower 
Bounds

Known 
Algorithms
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II. Related Work

Previous Results

Interesting „jump“!Even our simple algorithm 
has this complexity!! 

Ω(n1/4)O(        )∆ ≥ 3

???O(log n)∆ = 2

???O(log n)∆ = 1

Known Lower 
Bounds

Known 
Algorithms
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II. Related Work

Previous Results

Ω(n1/4)O(        )∆ ≥ 3

???O(log n)∆ = 2

???O(log log n)∆ = 1

Known Lower 
Bounds

Known 
Algorithms

We will now derive an algorithm with time complexity 
O(log log n)!
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III. The O(log log n) MST Algorithm

General Idea

In order to reduce the number of rounds, obviously 
clusters have to grow faster!

In our simple algorithm, we used the MWOE of each 
cluster to merge clusters.

With this approach, the minimum cluster size doubled
in each phase.

It would certainly be faster, if the t lightest outgoing 
edges of each cluster were used, where t is in the order 
of the number of nodes in the cluster!

Æ This is exactly what our new algorithm will do!
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III. The O(log log n) MST Algorithm

General Idea

In order to reduce the number of rounds, obviously 
clusters have to grow faster!

Let βk denote the minimum cluster size in phase k, then 
it holds for our simple algorithms that

βk+1 ≥ 2 · βk

and

β0 := 1
thus 

2k ≤ βk ≤ n  Æ k = O(log n)
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III. The O(log log n) MST Algorithm

General Idea

Our goal is to improve the following inequality:

We will derive an algorithm for which it holds that:

βk+1 ≥ βk (βk + 1)

βk+1 ≥ 2 · βk

Thus the cluster sizes grow quadratically as opposed to 
merely double in each phase! In order to achieve such a 
rate, information has to be spread faster!

We will use a simple trick for that...
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III. The O(log log n) MST Algorithm

General Idea

Unfortunately, we cannot send  a lot of information 
over a single link...

x

y z

<x>,<y>,<z>
a

b
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III. The O(log log n) MST Algorithm

General Idea

However, we can send a lot of information from different 
nodes to a particular node v0!

A node can simply send parts of the information, that it 
wants to transmit to a specific node, to other nodes. 
These nodes can send all parts to the specific node in 
one step!! 

This can be used to share workload!!!
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III. The O(log log n) MST Algorithm

General Idea

We will use this trick twice in our 
algorithm!

<x> <y> <z>

a

b

<x>

<y>
<z>
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III. The O(log log n) MST Algorithm

General Idea

Our new algorithm will execute the following steps in 
each phase.

1. Each cluster computes 
the β lightest edges
e1,...,eβ to other distinct 
clusters

Let β be the minimal 
cluster size.

β = 42. Assign at most one of 
those lightest edges to the 
members of the cluster!

cluster

e1

e2

e3

e4

1

2

3
4
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III. The O(log log n) MST Algorithm

General Idea

3. Each node with an edge 
<v,u,w({v,u})> assigned to 
it, sends <v,u,w({v,u})> to a 
specific node v0

β = 4vo

cluster cluster4. Node v0 computes 
the lightest edges 
that can be safely 
added to the 
spanning tree

Step 2 and 3 together 
is exactly our trick!
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III. The O(log log n) MST Algorithm

General Idea

5. Node v0 sends a 
message to a node, if its 
assigned edge is added 
to the spanning tree

β = 4vo

cluster cluster6. Each node, that 
received a message, 
broadcasts it to all 
other nodes (Æ All 
nodes have to now 
about all added 
edges!)

Our trick again!
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III. The O(log log n) MST Algorithm

General Idea

This way, more edges can be added in one phase!

However, it is not clear yet how fast it really is...

Furthermore, we do not know yet how these steps work 
in detail!!!

Æ There are a few obvious problems...
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III. The O(log log n) MST Algorithm

Problems

First problem:

How can the β lightest outgoing edges of a 
specific cluster be computed?

Æ This is actually not so difficult. The 
procedure Cheap_Out in the actual algorithm 
copes with this problem. We will treat it in the 
following section.
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III. The O(log log n) MST Algorithm

Problems

Second problem:

How can the designated node v0 know which 
edges can be added without creating a cycle in 
the constructed graph?

Let‘s illustrate the problem with an 
example graph!
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III. The O(log log n) MST Algorithm

Problems

In our example:

|V| = n = 12

β = 2 (minimum cluster size)

This is the picture of the 
designated node v0 after 
receiving the b = 2 lightest 
outgoing edges of each cluster

v0 does not know about the edge e! It is the 3rd lightest 
edge of both adjacent clusters!

1

2

3

4

5

6

7

8e
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III. The O(log log n) MST Algorithm

Problems

v0 can construct a logical graph. Its nodes are the 
clusters and its edges are the β = 2 lightest outgoing 
edges.

1

2

3

4

5

6

7

8e

5
e

2

31

4

6

7 8
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III. The O(log log n) MST Algorithm

Problems

Based on the knowledge of the β = 2 lightest 
outgoing edges, v0 can locally merge nodes of the 
logical graph into clusters. The 4 edges with weights 
1, 2, 3 and 4 can be chosen safely, since always the 
MWOE is used.

5
e

2

31

4

6

7 8

Add edges

1, 2, 3, 4 5

2

31

4

6

7 8e

super-cluster super-cluster
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III. The O(log log n) MST Algorithm

Problems

If the edge with weight 6 is used to finish 
the construction of the spanning tree, then 
the resulting tree is not the MST!!!

5

2

31

4

6

7 8e

The problem is that in both
(super-)clusters, at least one of 
the nodes has already used up 
all of its β outgoing edges. The 
(β+1)th outgoing edge might be 
lighter than other edges!!!

So, when is it safe to add 
an edge???
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step

Let‘s put everything together and solve the open 
problems! 

Initally, each node is itself a cluster of size 1 and no 
edges are selected.

The algorithm consists of 6 steps. Each step can be 
performed in constant time.

All 6 steps together build one phase of the algorithm, 
thus the time complexity of one phase is O(1).

A specific node in each cluster F, e.g. the node with 
minimum ID, is considered the leader ℓ(F) of the 
cluster F.
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III. The O(log log n) MST Algorithm

Step 1

(a) Each node v computes the minimum-weight edge 
e(v,F) that connects v to any node of cluster F for all 
clusters other than the own cluster

(b) Each node v sends e(v,F) to the leader ℓ(F) for all 
clusters other than the own cluster

The Algorithm Step by Step

cluster F1
cluster F2

ℓ(F1) ℓ(F2)

v
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III. The O(log log n) MST Algorithm

(a) Each leader v of a cluster F (i.e. ℓ(F) =v) computes 
the lightest edge between F and every other cluster

(b) Each leader v performs procedure Cheap_Out Æ
Selects the β lightest outgoing edges and appoints
them to its nodes

The Algorithm Step by Step

cluster F
ℓ(F)

e2

e1

e3

e4

g(e1)

g(e2) g(e3)

g(e4)

If edge e is 
appointed to v, then 
v is denoted e‘s 
guardian g(e)

Step 2
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III. The O(log log n) MST Algorithm

Code for the leader of cluster F

Input: Lightest edge e(F,F‘) for every other cluster F‘

1. Sort the input edges in increasing order of weight

2. Define β = min{|F|, <# of clusters>}

3. Choose the first β nodes of the sorted list

4. Appoint the node with the ith largest ID as the guardian 
of the ith edge, i = 1,...,β

5. Send a message about the edge to the node it is 
appointed to

The Algorithm Step by Step

Procedure Cheap_Out
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step

All nodes, that are guardians for a specific edge, send a 
message to the designated node v0, e.g. the node with 
the minimal ID in the graph

v0 knows the β
lightest outgoing 
edges of each 
cluster!

vo

cluster cluster

Step 3
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step

(a) v0 locally performs procedure Const_Frags Æ
Computes the edges to be added

(b) For all added edges, v0 sends a message to g(e)

vo

cluster cluster

Step 4
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step

How does Const_Frags work?

5

2

31

4

6

7 8e

As we‘ve seen before, a problem occurs when all β
outgoing edges of a cluster are used up!

More precisely, a problem occurs 
only if there is at least one 
cluster in each of the two super-
clusters that are supposed to be 
merged!!

Used up all edges!
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step

How does Const_Frags work?

5

2

31

4

6

7 8e

We call a super-cluster containing a cluster that used 
up all of its β edges finished.

If an edge is the lightest outgoing 
edge of one super-cluster that is 
not finished, then it is still safe to 
add it, no matter if the other 
super-cluster is finished, since we 
are sure that there is no better 
edge to connect the unfinished 
super-cluster to other clusters. finished finished
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step
Procedure Const_Frags

Code for the designated node v0

Input: the β lightest outgoing edges of each cluster

1. Construct the logical graph

2. Sort the input edges in increasing order of weight

3. Go through the list, starting with the lightest edge:

If the edge can be added without creating a cycle then

add it

else

drop it
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step
Procedure Const_Frags

If the two super-clusters were merged then the new 
super-cluster is declared finished if

• the edge is the heaviest edge of a cluster in any of the 
two super-clusters or

• any of the two super-clusters is already finished

If the edge is dropped (Æ both clusters already belong 
to the same super-cluster) then the super-cluster 
containing the clusters the edge connects is declared 
finished if

• the edge is the heaviest edge of any of the two 
clusters
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step
Procedure Const_Frags

Note: If a super-cluster is declared finished then it will 
remain finished 

All edges between finished super-clusters are deleted 
(before looking at the next lightest edge)

Those are the 
dangerous edges!
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III. The O(log log n) MST Algorithm

The Algorithm Step by Step

All nodes, that received a message from v0, broadcast 
their edge to all other nodes

Step 6

Each node adds all edges and computes the new 
clusters

If the number of clusters is greater than 1, then the 
next phase starts

Step 5
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III. The O(log log n) MST Algorithm

The entire algorithm for node v in cluster F

The Algorithm Step by Step

1. Compute the minimum-weight edge e(v,F‘) that 
connects v to cluster F‘ and send it to ℓ(F‘) for all 
clusters F‘ ≠ F

2. if v = ℓ(F): Compute lightest edge between F and 
every other cluster. Perform Cheap_Out

3. if v = g(e) for some edge e: Send <e> to v0

4. if v = v0: Perform Const_Frags. Send message to 
g(e) for each added edge e

5. if v received a message from v0: Broadcast it

6. Add all received edges and compute the new clusters
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IV. Analysis of the Algorithm

Correctness

It suffices to show that whenever an edge is added, it is 
part of the MST Æ We only have to analyze Const_Frags!

super-cluster

e

e‘

Proof [Sketch]: We always 
add the lightest outgoing 
edge of each super-cluster. 
Because of Lemma 1, this 
is always the right choice! 
Therefore, we only have to 
watch out that we choose 
the right edges from the  
various clusters (since we 
only know some of the 
outgoing edges)!!!
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IV. Analysis of the Algorithm

Correctness

Assume edge e is used to merge 
super-cluster SC1 and SC2. 
Further assume there is a lighter 
outgoing edge e‘ (w(e‘) < w(e)) 
that connects super-cluster SC1
with another super-cluster, say, 
SC3. 

is a cluster
SC1

SC2

SC3

e

e‘
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IV. Analysis of the Algorithm

Correctness

Case 1: e‘ is among the β lightest outgoing edges

Since w(e‘) < w(e), e‘ must 
have been considered before 
e, thus either SC1 and SC3
have been merged before or 
e‘ was dropped because SC1
= SC3. Either way, e‘ cannot 
be an outgoing edge when 
the algorithm adds e.

Æ Contradiction! SC1

SC2

SC3

e

e‘
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IV. Analysis of the Algorithm

Correctness

Case 2.1: There is a lighter 
edge e‘‘ from the cluster to the 
super-cluster SC3:

It follows that w(e‘‘) < w(e‘). 
Since SC1 ≠ SC3, e‘‘ has not 
been considered yet, thus w(e) 
< w(e‘‘). It follows that

w(e) < w(e‘).

Æ Contradiction!
SC1

SC2

SC3

e

e‘‘

Case 2: e‘ is not among the β lightest outgoing edges
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IV. Analysis of the Algorithm

Correctness

Case 2: e‘ is not among the β lightest outgoing edges

Case 2.2: There is no lighter edge 
from the cluster to the super-
cluster SC3:

Thus all β outgoing edges have 
lower weights than e‘. In 
particular, this holds also for e, 
thus w(e) < w(e‘).

Æ Contradiction!
SC1SC1

SC2

SC3

e

e‘
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IV. Analysis of the Algorithm

Time Complexity

Each phase requires O(1) rounds, but how many 
phases are required until termination?

Reminder: βk denotes the minimum cluster size 
in phase k.

Lemma 2: It holds that

βk+1 ≥ βk (βk + 1).
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IV. Analysis of the Algorithm

Time Complexity

Proof [Sketch]:

We prove a stronger claim: Whenever a super-cluster 
is declared finished in phase k+1, it contains at least 
βk + 1 clusters.

Each cluster has (at least) βk
outgoing edges in phase k + 1, 
since βk is the minimal cluster 
size after phase k.

βk

1
2

C
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IV. Analysis of the Algorithm

Time Complexity

Case 1: The super-cluster is declared finished after 
one of its clusters has used up all of its βk outgoing 
edges. Let C be a cluster.

Let‘s call those edges edge 1, 
2,..., βk leading to the clusters 
C1, C2..., Cβ.

If the inspection of an edge does 
not result in a merge, then the 
clusters already belong to the 
same super-cluster! If there is a 
merge, then they belong to the 
same super-cluster afterwards.

βk

1
2

C
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IV. Analysis of the Algorithm

Time ComplexityTime Complexity

Thus, at the end, the super-cluster contains at 
least C, C1, C2,...,Cβ! Æ The super-cluster contains 
at least βk + 1 clusters.

Case 2: The super-cluster is declared 
finished after merging with an already 
finished super-cluster.

βk

1
2

CUsing an inductive argument, 
the finished super-cluster must 
already contain at least βk + 1
clusters, since one of its clusters 
has used up all of its βk edges.
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IV. Analysis of the Algorithm

Time Complexity

Theorem 1: The time complexity is

O(log log n) rounds.

Proof: By Lemma 2, it holds that βk+1 ≥ βk (βk + 1). 
Furthermore it holds that β0 := 1. Hence it follows that

βk ≥ 22k-1

for every k ≥ 1. Since βk ≤ n, it follows that k ≤
log(log n) + 1. Since each phase requires O(1) 
rounds, the time complexity is O(log log n).
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IV. Analysis of the Algorithm

Message Complexity

Theorem 2: The message complexity is

O(n2 log n).

The proof is simple: Count the messages exchanged in 
steps 1, 3, 4 and 5. We will not do that here.

Adler et al. showed that the minimal number of bits 
required to solve the MST problem in this model is 
Ω(n2 log n), thus this algorithm is asymptotically 
optimal!!!
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V. Summary

Results

The presented algorithm solves the MST problem 
in the given model in O(log log n) rounds.

The algorithm sends O(n2 log n) bits in total, which 
is asymptotically optimal.
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V. Summary

Conclusions

„An obvious question we leave open is whether the 
algorithm can be improved, or is there an inherent 
lower bound of Ω(log log n) on the number of 
communication rounds required to construct an 
MST in this model.“

• Is there a faster algorithm?

• Is Ω(log log n) a lower bound?

• Is there an algorithm with time complexity 
O(log log n) for graphs of diameter 2?
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VI. Extensive Example

The graph

All other edges 
are heavier!!!1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0
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VI. Extensive Example

Phase 1

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

<1>

<1>

<2>

<2>

<3>

<4>

<4>

<5>

<5>

<6>

<6>

1. Not necessary

2. Not necessary

3. Send MWOE to v0

4. Const_Frags!
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VI. Extensive Example

Phase 1 – Const_Frags

1. Construct logical graph

1

2

3

4

5

6
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VI. Extensive Example

Phase 1 – Const_Frags

2. Add edges

1

2

3

4

5

6
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VI. Extensive Example

Phase 1
1. Not necessary

2. Not necessary

3. Send MWOE to v0

4. Const_Frags!

5. Send e to g(e)1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

<3>

<4>

<5>

<5>

g(<1>)

g(<2>)

g(<3>)

g(<4>)

g(<5>)

g(<6>)

g(<4>)

g(<2>)

g(<5>)

g(<6>)

g(<1>)

g(<3>)

Only some messages are displayed

<4>
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VI. Extensive Example

Phase 1
1. Not necessary

2. Not necessary

3. Send MWOE to v0

4. Const_Frags!

5. Send e to g(e)

6. Broadcast e and 
update the clusters

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

g(<1>)

g(<2>)

g(<3>)

g(<4>)

g(<5>)

g(<6>)

Only some messages are displayed

g(<4>)

g(<2>)

g(<5>)

g(<3>)

g(<1>)

g(<6>)
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VI. Extensive Example

Phase 2

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

Only some messages are displayed

<8>

<12>

<15>
<7>

<13>
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VI. Extensive Example

Phase 2

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

Only some messages are displayed

<13>

<12> <12>

<14>

<10><8>

g(<12>)

g(<12>)

g(<14>)

g(<13>) g(<9>)

g(<7>)
g(<10>)

g(<8>)
g(<8>)

g(<7>)

g(<9>)

g(<10>)
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VI. Extensive Example

Phase 2

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

<8>

<7>

<10>

<12>

<13>

<12>

<8>

<14>

<9>

<10>

<9>

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

3. Send appointed edge 
to v0

4. Const_Frags!
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VI. Extensive Example

Phase 2 – Const_Frags

1. Construct logical graph

7

8

9

10

12

13 14
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VI. Extensive Example

Phase 2 – Const_Frags

1. Add edges

7

8

9

10

12

13 14

finished finished

Edges between 
finished super-
clusters must not 
be added!
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VI. Extensive Example

Phase 2
1. Compute e(v,F‘) and 

send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

3. Send appointed edge 
to v0

4. Const_Frags!

5. Send e to g(e)

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

Only some messages are displayed

<7>
g(<7>)

g(<8>)
g(<8>)

<8>
<8>

g(<10>)

g(<9>)

g(<9>)

g(<10>)

g(<7>)
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VI. Extensive Example

Phase 2
1. Compute e(v,F‘) and 

send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

3. Send appointed edge 
to v0

4. Const_Frags!

5. Send e to g(e)

6. Broadcast e and 
update the clusters

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

Only some messages are displayed

g(<7>)

g(<8>)
g(<8>)

g(<10>)

g(<9>)

g(<9>)

g(<10>)

g(<7>)
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VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

Only some messages are displayed

<15>

<12>

<11>

Principles of Distributed Computing SS 2007 T. Locher 79

VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

<12>

g(<12>)

g(<12>)

g(<11>)

g(<11>)

<12>
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VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

g(<12>)

g(<12>)

g(<11>)

g(<11>)

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

3. Send appointed 
edge to v0

4. Const_Frags!
<11>

<12>

<12>
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VI. Extensive Example

Phase 3 – Const_Frags

1. Construct logical graph

11
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VI. Extensive Example

Phase 3 – Const_Frags

1. Add edges

11
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VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

g(<12>)

g(<12>)

g(<11>)

g(<11>)

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

3. Send appointed 
edge to v0

4. Const_Frags!

5. Send e to g(e)

<11>
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VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13

15

v0

g(<12>)

g(<12>)

g(<11>)

g(<11>)

1. Compute e(v,F‘) and 
send it to ℓ(F‘)

2. Select β = 2 lightest 
outgoing edges and 
appoint guardians

3. Send appointed 
edge to v0

4. Const_Frags!

5. Send e to g(e)

6. Broadcast e and 
update the clusters

Only some messages are displayed

14
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VI. Extensive Example

After phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13

15

v0

Done!   ☺14
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