
Distributed MST Construction

Thomas Locher, ETH Zurich
Roger Wattenhofer, ETH Zurich

Summer 2007

Principles of Distributed Computing

Distributed
Computing

Group Principles of Distributed Computing SS 2007 T. Locher 2

Overview

I. Introduction of the Problem

II. Previous Results

III. The O(log log n) MST Algorithm

IV. Analysis of the Algorithm

V. Summary

VI. Extensive Example

Principles of Distributed Computing SS 2007 T. Locher 3

Overview

I. Introduction of the Problem

¾ Definitions & System Model

¾ A Simple Algorithm

II. Previous Results

III. The New Algorithm

IV. Analysis of the Algorithm

V. Summary

VI. Extensive Example

Principles of Distributed Computing SS 2007 T. Locher 4

I. Introduction of the Problem

Definitions

• A tree is a connected graph without cycles.

• A subgraph that spans all vertices of a graph

is called a spanning subgraph.

• Among all the spanning trees of a weighted and
connected graph, the one (possibly more) with the
least total weight is called a minimum spanning tree
(MST).

Principles of Distributed Computing SS 2007 T. Locher 5

I. Introduction of the Problem

Definitions

• In a MST algorithm, |V| - 1 edges have to

be chosen in total. In each phase of the

algorithm, probably only a fraction of those edges are
chosen.

• Nodes that are directly or indirectly connected using
chosen edges only belong to the same cluster.

•The minimum weight outgoing edge (MWOE) is the
edge with the lowest weight among all incident edges
leading to other clusters.

Principles of Distributed Computing SS 2007 T. Locher 6

I. Introduction of the Problem

Usage of MST

Minimize the cost associated with global

operations such as broadcasts!

Æ Minimize the message complexity:

Avoid traffic explosion by using a spanning tree (no
cycles!)

Æ Minimize the time complexity:

If the edge weights represent the delay on the link,
then MST minimizes the execution time.

Principles of Distributed Computing SS 2007 T. Locher 7

I. Introduction of the Problem

System Model

• The system is represented by

a complete weighted undirected graph

G=(V,E,w) where w(e) denotes the weight of edge e ∈
E and |V|=n. All edge weights are different (w.l.o.g.).

• Each node has a distinct ID of O(log n) bits.

• Each node knows all the edges it is incident to and
their weights.

• Each node knows about all the other nodes.

• The synchronous model is used.

Principles of Distributed Computing SS 2007 T. Locher 8

I. Introduction of the Problem

Communication advances in global rounds.

In each round, processes send messages, receive
messages and do some local computation.

The time complexity is the number of rounds until the
computation terminates in the worst case.

The message complexity is the number of messages
exchanged in the worst case.

Synchronous Model

Principles of Distributed Computing SS 2007 T. Locher 9

I. Introduction of the Problem

Getting a Feeling for the Problem...

How hard is it to compute the MST in a distributed
system (assuming a fully connected graph)?

All nodes know the weights of all incident edges. If all
nodes send this information to all other nodes, then all
nodes suddenly have the entire picture!

Æ A simple algorithm that requires only one round!

However, that is not really interesting...

Therefore, the message size is limited to O(log n) bits!

Note that the previous algorithm requires messages of
size O(n log n)!

Principles of Distributed Computing SS 2007 T. Locher 10

I. Introduction of the Problem

Getting a Feeling for the Problem...

Since each node ID (and edge weight) requires
O(log n) bits, this implies that only a constant
number of node IDs (and edge weight) can be
packed into a single message!

We demand that all nodes know the MST at the end
of the computation!

How can the MST be constructed now?

Æ Let‘s look at a simple algorithm first...

Principles of Distributed Computing SS 2007 T. Locher 11

I. Introduction of the Problem

A Simple Algorithm

All MST algorithms (local or distributed) are based on
the following lemma:

Part of
the MST:

Lemma 1: It is always safe to add an edge to the
spanning tree, if this edge is the MWOE of a node v.

9 15

v
cluster cluster

Principles of Distributed Computing SS 2007 T. Locher 12

I. Introduction of the Problem

A Simple Algorithm

Phase k: Code for node v in cluster F

Input: Set of chosen edges that build node clusters

1. Compute the MWOE

2. Send the MWOE to all nodes in the same cluster

3. Receive messages from the other nodes

4. If own MWOE is the lightest, then broadcast it to all other
nodes and add this edge (Æ All nodes have to know all
clusters after each round)

5. Receive other broadcast messages and add those edges
as well

Principles of Distributed Computing SS 2007 T. Locher 13

I. Introduction of the Problem

A Simple Algorithm

Example

Round 1:

<w({v,u})> = <v,u,w({v,u})>

<1> <1><1>
<1>

<2><2>
<2>

<2>

1

2

3 4

5 6

1

2

3 4

5 6

Broadcast the lightest
edge to the other nodes

Add edges and update
clusters

Principles of Distributed Computing SS 2007 T. Locher 14

I. Introduction of the Problem

<3>

A Simple Algorithm

Example

Round 2:

<w({v,u})> = <v,u,w({v,u})>

1

2

3 4

5 6

<3>

<3><4>

<4>

Send MWOE to all nodes
in the same cluster

1

2

3 4

5 6

Broadcast the lightest
edge to the other nodes

<3>

<3>

<3>

Principles of Distributed Computing SS 2007 T. Locher 15

I. Introduction of the Problem

A Simple Algorithm

Example

Round 2:

<w({v,u})> = <v,u,w({v,u})>

1

2

3 4

5 6

Add edges and update
clusters

The algorithm is obviously
correct. Since the minimum
cluster size doubles in each
round, the algorithm
computes the MST in

O(log n) rounds!

Can it be improved???

Lower bound???

Principles of Distributed Computing SS 2007 T. Locher 16

Overview

I. Introduction of the Problem

II. Previous Results

¾ Lower and Upper Bounds

¾ Open Questions

III. The O(log log n) MST Algorithm

IV. Analysis of the Algorithm

V. Summary

VI. Extensive Example

Principles of Distributed Computing SS 2007 T. Locher 17

II. Related Work

Previous Results

∆ denotes the constant diameter of the graph, i.e. the
maximum distance between any two nodes of the graph.

Ω(n1/4)O()∆ ≥ 3

???O(log n)∆ = 2

???O(log n)∆ = 1

Known Lower
Bounds

Known
Algorithms

Principles of Distributed Computing SS 2007 T. Locher 18

II. Related Work

Previous Results

Interesting „jump“!Even our simple algorithm
has this complexity!!

Ω(n1/4)O()∆ ≥ 3

???O(log n)∆ = 2

???O(log n)∆ = 1

Known Lower
Bounds

Known
Algorithms

Principles of Distributed Computing SS 2007 T. Locher 19

II. Related Work

Previous Results

Ω(n1/4)O()∆ ≥ 3

???O(log n)∆ = 2

???O(log log n)∆ = 1

Known Lower
Bounds

Known
Algorithms

We will now derive an algorithm with time complexity
O(log log n)!

Principles of Distributed Computing SS 2007 T. Locher 20

Overview

I. Introduction of the Problem

II. Previous Results

III. The O(log log n) MST Algorithm

¾ General Idea & Problems

¾ The Algorithm Step by Step

IV. Analysis of the Algorithm

V. Summary

VI. Extensive Example

Principles of Distributed Computing SS 2007 T. Locher 21

III. The O(log log n) MST Algorithm

General Idea

In order to reduce the number of rounds, obviously
clusters have to grow faster!

In our simple algorithm, we used the MWOE of each
cluster to merge clusters.

With this approach, the minimum cluster size doubled
in each phase.

It would certainly be faster, if the t lightest outgoing
edges of each cluster were used, where t is in the order
of the number of nodes in the cluster!

Æ This is exactly what our new algorithm will do!

Principles of Distributed Computing SS 2007 T. Locher 22

III. The O(log log n) MST Algorithm

General Idea

In order to reduce the number of rounds, obviously
clusters have to grow faster!

Let βk denote the minimum cluster size in phase k, then
it holds for our simple algorithms that

βk+1 ≥ 2 · βk

and

β0 := 1
thus

2k ≤ βk ≤ n Æ k = O(log n)

Principles of Distributed Computing SS 2007 T. Locher 23

III. The O(log log n) MST Algorithm

General Idea

Our goal is to improve the following inequality:

We will derive an algorithm for which it holds that:

βk+1 ≥ βk (βk + 1)

βk+1 ≥ 2 · βk

Thus the cluster sizes grow quadratically as opposed to
merely double in each phase! In order to achieve such a
rate, information has to be spread faster!

We will use a simple trick for that...
Principles of Distributed Computing SS 2007 T. Locher 24

III. The O(log log n) MST Algorithm

General Idea

Unfortunately, we cannot send a lot of information
over a single link...

x

y z

<x>,<y>,<z>
a

b

Principles of Distributed Computing SS 2007 T. Locher 25

III. The O(log log n) MST Algorithm

General Idea

However, we can send a lot of information from different
nodes to a particular node v0!

A node can simply send parts of the information, that it
wants to transmit to a specific node, to other nodes.
These nodes can send all parts to the specific node in
one step!!

This can be used to share workload!!!

Principles of Distributed Computing SS 2007 T. Locher 26

III. The O(log log n) MST Algorithm

General Idea

We will use this trick twice in our
algorithm!

<x> <y> <z>

a

b

<x>

<y>
<z>

Principles of Distributed Computing SS 2007 T. Locher 27

III. The O(log log n) MST Algorithm

General Idea

Our new algorithm will execute the following steps in
each phase.

1. Each cluster computes
the β lightest edges
e1,...,eβ to other distinct
clusters

Let β be the minimal
cluster size.

β = 42. Assign at most one of
those lightest edges to the
members of the cluster!

cluster

e1

e2

e3

e4

1

2

3
4

Principles of Distributed Computing SS 2007 T. Locher 28

III. The O(log log n) MST Algorithm

General Idea

3. Each node with an edge
<v,u,w({v,u})> assigned to
it, sends <v,u,w({v,u})> to a
specific node v0

β = 4vo

cluster cluster4. Node v0 computes
the lightest edges
that can be safely
added to the
spanning tree

Step 2 and 3 together
is exactly our trick!

Principles of Distributed Computing SS 2007 T. Locher 29

III. The O(log log n) MST Algorithm

General Idea

5. Node v0 sends a
message to a node, if its
assigned edge is added
to the spanning tree

β = 4vo

cluster cluster6. Each node, that
received a message,
broadcasts it to all
other nodes (Æ All
nodes have to now
about all added
edges!)

Our trick again!

Principles of Distributed Computing SS 2007 T. Locher 30

III. The O(log log n) MST Algorithm

General Idea

This way, more edges can be added in one phase!

However, it is not clear yet how fast it really is...

Furthermore, we do not know yet how these steps work
in detail!!!

Æ There are a few obvious problems...

Principles of Distributed Computing SS 2007 T. Locher 31

III. The O(log log n) MST Algorithm

Problems

First problem:

How can the β lightest outgoing edges of a
specific cluster be computed?

Æ This is actually not so difficult. The
procedure Cheap_Out in the actual algorithm
copes with this problem. We will treat it in the
following section.

Principles of Distributed Computing SS 2007 T. Locher 32

III. The O(log log n) MST Algorithm

Problems

Second problem:

How can the designated node v0 know which
edges can be added without creating a cycle in
the constructed graph?

Let‘s illustrate the problem with an
example graph!

Principles of Distributed Computing SS 2007 T. Locher 33

III. The O(log log n) MST Algorithm

Problems

In our example:

|V| = n = 12

β = 2 (minimum cluster size)

This is the picture of the
designated node v0 after
receiving the b = 2 lightest
outgoing edges of each cluster

v0 does not know about the edge e! It is the 3rd lightest
edge of both adjacent clusters!

1

2

3

4

5

6

7

8e

Principles of Distributed Computing SS 2007 T. Locher 34

III. The O(log log n) MST Algorithm

Problems

v0 can construct a logical graph. Its nodes are the
clusters and its edges are the β = 2 lightest outgoing
edges.

1

2

3

4

5

6

7

8e

5
e

2

31

4

6

7 8

Principles of Distributed Computing SS 2007 T. Locher 35

III. The O(log log n) MST Algorithm

Problems

Based on the knowledge of the β = 2 lightest
outgoing edges, v0 can locally merge nodes of the
logical graph into clusters. The 4 edges with weights
1, 2, 3 and 4 can be chosen safely, since always the
MWOE is used.

5
e

2

31

4

6

7 8

Add edges

1, 2, 3, 4 5

2

31

4

6

7 8e

super-cluster super-cluster

Principles of Distributed Computing SS 2007 T. Locher 36

III. The O(log log n) MST Algorithm

Problems

If the edge with weight 6 is used to finish
the construction of the spanning tree, then
the resulting tree is not the MST!!!

5

2

31

4

6

7 8e

The problem is that in both
(super-)clusters, at least one of
the nodes has already used up
all of its β outgoing edges. The
(β+1)th outgoing edge might be
lighter than other edges!!!

So, when is it safe to add
an edge???

Principles of Distributed Computing SS 2007 T. Locher 37

III. The O(log log n) MST Algorithm

The Algorithm Step by Step

Let‘s put everything together and solve the open
problems!

Initally, each node is itself a cluster of size 1 and no
edges are selected.

The algorithm consists of 6 steps. Each step can be
performed in constant time.

All 6 steps together build one phase of the algorithm,
thus the time complexity of one phase is O(1).

A specific node in each cluster F, e.g. the node with
minimum ID, is considered the leader ℓ(F) of the
cluster F.

Principles of Distributed Computing SS 2007 T. Locher 38

III. The O(log log n) MST Algorithm

Step 1

(a) Each node v computes the minimum-weight edge
e(v,F) that connects v to any node of cluster F for all
clusters other than the own cluster

(b) Each node v sends e(v,F) to the leader ℓ(F) for all
clusters other than the own cluster

The Algorithm Step by Step

cluster F1
cluster F2

ℓ(F1) ℓ(F2)

v

Principles of Distributed Computing SS 2007 T. Locher 39

III. The O(log log n) MST Algorithm

(a) Each leader v of a cluster F (i.e. ℓ(F) =v) computes
the lightest edge between F and every other cluster

(b) Each leader v performs procedure Cheap_Out Æ
Selects the β lightest outgoing edges and appoints
them to its nodes

The Algorithm Step by Step

cluster F
ℓ(F)

e2

e1

e3

e4

g(e1)

g(e2) g(e3)

g(e4)

If edge e is
appointed to v, then
v is denoted e‘s
guardian g(e)

Step 2

Principles of Distributed Computing SS 2007 T. Locher 40

III. The O(log log n) MST Algorithm

Code for the leader of cluster F

Input: Lightest edge e(F,F‘) for every other cluster F‘

1. Sort the input edges in increasing order of weight

2. Define β = min{|F|, <# of clusters>}

3. Choose the first β nodes of the sorted list

4. Appoint the node with the ith largest ID as the guardian
of the ith edge, i = 1,...,β

5. Send a message about the edge to the node it is
appointed to

The Algorithm Step by Step

Procedure Cheap_Out

Principles of Distributed Computing SS 2007 T. Locher 41

III. The O(log log n) MST Algorithm

The Algorithm Step by Step

All nodes, that are guardians for a specific edge, send a
message to the designated node v0, e.g. the node with
the minimal ID in the graph

v0 knows the β
lightest outgoing
edges of each
cluster!

vo

cluster cluster

Step 3

Principles of Distributed Computing SS 2007 T. Locher 42

III. The O(log log n) MST Algorithm

The Algorithm Step by Step

(a) v0 locally performs procedure Const_Frags Æ
Computes the edges to be added

(b) For all added edges, v0 sends a message to g(e)

vo

cluster cluster

Step 4

Principles of Distributed Computing SS 2007 T. Locher 43

III. The O(log log n) MST Algorithm

The Algorithm Step by Step

How does Const_Frags work?

5

2

31

4

6

7 8e

As we‘ve seen before, a problem occurs when all β
outgoing edges of a cluster are used up!

More precisely, a problem occurs
only if there is at least one
cluster in each of the two super-
clusters that are supposed to be
merged!!

Used up all edges!
Principles of Distributed Computing SS 2007 T. Locher 44

III. The O(log log n) MST Algorithm

The Algorithm Step by Step

How does Const_Frags work?

5

2

31

4

6

7 8e

We call a super-cluster containing a cluster that used
up all of its β edges finished.

If an edge is the lightest outgoing
edge of one super-cluster that is
not finished, then it is still safe to
add it, no matter if the other
super-cluster is finished, since we
are sure that there is no better
edge to connect the unfinished
super-cluster to other clusters. finished finished

Principles of Distributed Computing SS 2007 T. Locher 45

III. The O(log log n) MST Algorithm

The Algorithm Step by Step
Procedure Const_Frags

Code for the designated node v0

Input: the β lightest outgoing edges of each cluster

1. Construct the logical graph

2. Sort the input edges in increasing order of weight

3. Go through the list, starting with the lightest edge:

If the edge can be added without creating a cycle then

add it

else

drop it
Principles of Distributed Computing SS 2007 T. Locher 46

III. The O(log log n) MST Algorithm

The Algorithm Step by Step
Procedure Const_Frags

If the two super-clusters were merged then the new
super-cluster is declared finished if

• the edge is the heaviest edge of a cluster in any of the
two super-clusters or

• any of the two super-clusters is already finished

If the edge is dropped (Æ both clusters already belong
to the same super-cluster) then the super-cluster
containing the clusters the edge connects is declared
finished if

• the edge is the heaviest edge of any of the two
clusters

Principles of Distributed Computing SS 2007 T. Locher 47

III. The O(log log n) MST Algorithm

The Algorithm Step by Step
Procedure Const_Frags

Note: If a super-cluster is declared finished then it will
remain finished

All edges between finished super-clusters are deleted
(before looking at the next lightest edge)

Those are the
dangerous edges!

Principles of Distributed Computing SS 2007 T. Locher 48

III. The O(log log n) MST Algorithm

The Algorithm Step by Step

All nodes, that received a message from v0, broadcast
their edge to all other nodes

Step 6

Each node adds all edges and computes the new
clusters

If the number of clusters is greater than 1, then the
next phase starts

Step 5

Principles of Distributed Computing SS 2007 T. Locher 49

III. The O(log log n) MST Algorithm

The entire algorithm for node v in cluster F

The Algorithm Step by Step

1. Compute the minimum-weight edge e(v,F‘) that
connects v to cluster F‘ and send it to ℓ(F‘) for all
clusters F‘ ≠ F

2. if v = ℓ(F): Compute lightest edge between F and
every other cluster. Perform Cheap_Out

3. if v = g(e) for some edge e: Send <e> to v0

4. if v = v0: Perform Const_Frags. Send message to
g(e) for each added edge e

5. if v received a message from v0: Broadcast it

6. Add all received edges and compute the new clusters

Principles of Distributed Computing SS 2007 T. Locher 50

Overview

I. Introduction of the Problem

II. Previous Results

III. The O(log log n) MST Algorithm

IV. Analysis of the Algorithm

¾ Correctness

¾ Time and Message Complexity

V. Summary

VI. Extensive Example

Principles of Distributed Computing SS 2007 T. Locher 51

IV. Analysis of the Algorithm

Correctness

It suffices to show that whenever an edge is added, it is
part of the MST Æ We only have to analyze Const_Frags!

super-cluster

e

e‘

Proof [Sketch]: We always
add the lightest outgoing
edge of each super-cluster.
Because of Lemma 1, this
is always the right choice!
Therefore, we only have to
watch out that we choose
the right edges from the
various clusters (since we
only know some of the
outgoing edges)!!!

Principles of Distributed Computing SS 2007 T. Locher 52

IV. Analysis of the Algorithm

Correctness

Assume edge e is used to merge
super-cluster SC1 and SC2.
Further assume there is a lighter
outgoing edge e‘ (w(e‘) < w(e))
that connects super-cluster SC1
with another super-cluster, say,
SC3.

is a cluster
SC1

SC2

SC3

e

e‘

Principles of Distributed Computing SS 2007 T. Locher 53

IV. Analysis of the Algorithm

Correctness

Case 1: e‘ is among the β lightest outgoing edges

Since w(e‘) < w(e), e‘ must
have been considered before
e, thus either SC1 and SC3
have been merged before or
e‘ was dropped because SC1
= SC3. Either way, e‘ cannot
be an outgoing edge when
the algorithm adds e.

Æ Contradiction! SC1

SC2

SC3

e

e‘

Principles of Distributed Computing SS 2007 T. Locher 54

IV. Analysis of the Algorithm

Correctness

Case 2.1: There is a lighter
edge e‘‘ from the cluster to the
super-cluster SC3:

It follows that w(e‘‘) < w(e‘).
Since SC1 ≠ SC3, e‘‘ has not
been considered yet, thus w(e)
< w(e‘‘). It follows that

w(e) < w(e‘).

Æ Contradiction!
SC1

SC2

SC3

e

e‘‘

Case 2: e‘ is not among the β lightest outgoing edges

Principles of Distributed Computing SS 2007 T. Locher 55

IV. Analysis of the Algorithm

Correctness

Case 2: e‘ is not among the β lightest outgoing edges

Case 2.2: There is no lighter edge
from the cluster to the super-
cluster SC3:

Thus all β outgoing edges have
lower weights than e‘. In
particular, this holds also for e,
thus w(e) < w(e‘).

Æ Contradiction!
SC1SC1

SC2

SC3

e

e‘

Principles of Distributed Computing SS 2007 T. Locher 56

IV. Analysis of the Algorithm

Time Complexity

Each phase requires O(1) rounds, but how many
phases are required until termination?

Reminder: βk denotes the minimum cluster size
in phase k.

Lemma 2: It holds that

βk+1 ≥ βk (βk + 1).

Principles of Distributed Computing SS 2007 T. Locher 57

IV. Analysis of the Algorithm

Time Complexity

Proof [Sketch]:

We prove a stronger claim: Whenever a super-cluster
is declared finished in phase k+1, it contains at least
βk + 1 clusters.

Each cluster has (at least) βk
outgoing edges in phase k + 1,
since βk is the minimal cluster
size after phase k.

βk

1
2

C

Principles of Distributed Computing SS 2007 T. Locher 58

IV. Analysis of the Algorithm

Time Complexity

Case 1: The super-cluster is declared finished after
one of its clusters has used up all of its βk outgoing
edges. Let C be a cluster.

Let‘s call those edges edge 1,
2,..., βk leading to the clusters
C1, C2..., Cβ.

If the inspection of an edge does
not result in a merge, then the
clusters already belong to the
same super-cluster! If there is a
merge, then they belong to the
same super-cluster afterwards.

βk

1
2

C

Principles of Distributed Computing SS 2007 T. Locher 59

IV. Analysis of the Algorithm

Time ComplexityTime Complexity

Thus, at the end, the super-cluster contains at
least C, C1, C2,...,Cβ! Æ The super-cluster contains
at least βk + 1 clusters.

Case 2: The super-cluster is declared
finished after merging with an already
finished super-cluster.

βk

1
2

CUsing an inductive argument,
the finished super-cluster must
already contain at least βk + 1
clusters, since one of its clusters
has used up all of its βk edges.

Principles of Distributed Computing SS 2007 T. Locher 60

IV. Analysis of the Algorithm

Time Complexity

Theorem 1: The time complexity is

O(log log n) rounds.

Proof: By Lemma 2, it holds that βk+1 ≥ βk (βk + 1).
Furthermore it holds that β0 := 1. Hence it follows that

βk ≥ 22k-1

for every k ≥ 1. Since βk ≤ n, it follows that k ≤
log(log n) + 1. Since each phase requires O(1)
rounds, the time complexity is O(log log n).

Principles of Distributed Computing SS 2007 T. Locher 61

IV. Analysis of the Algorithm

Message Complexity

Theorem 2: The message complexity is

O(n2 log n).

The proof is simple: Count the messages exchanged in
steps 1, 3, 4 and 5. We will not do that here.

Adler et al. showed that the minimal number of bits
required to solve the MST problem in this model is
Ω(n2 log n), thus this algorithm is asymptotically
optimal!!!

Principles of Distributed Computing SS 2007 T. Locher 62

Overview

I. Introduction of the Problem

II. Previous Results

III. The New Algorithm

IV. Analysis of the Algorithm

V. Summary

¾ Results & Conclusions

VI. Extensive Example

Principles of Distributed Computing SS 2007 T. Locher 63

V. Summary

Results

The presented algorithm solves the MST problem
in the given model in O(log log n) rounds.

The algorithm sends O(n2 log n) bits in total, which
is asymptotically optimal.

Principles of Distributed Computing SS 2007 T. Locher 64

V. Summary

Conclusions

„An obvious question we leave open is whether the
algorithm can be improved, or is there an inherent
lower bound of Ω(log log n) on the number of
communication rounds required to construct an
MST in this model.“

• Is there a faster algorithm?

• Is Ω(log log n) a lower bound?

• Is there an algorithm with time complexity
O(log log n) for graphs of diameter 2?

Principles of Distributed Computing SS 2007 T. Locher 65

VI. Extensive Example

The graph

All other edges
are heavier!!!1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

Principles of Distributed Computing SS 2007 T. Locher 66

VI. Extensive Example

Phase 1

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

<1>

<1>

<2>

<2>

<3>

<4>

<4>

<5>

<5>

<6>

<6>

1. Not necessary

2. Not necessary

3. Send MWOE to v0

4. Const_Frags!

Principles of Distributed Computing SS 2007 T. Locher 67

VI. Extensive Example

Phase 1 – Const_Frags

1. Construct logical graph

1

2

3

4

5

6

Principles of Distributed Computing SS 2007 T. Locher 68

VI. Extensive Example

Phase 1 – Const_Frags

2. Add edges

1

2

3

4

5

6

Principles of Distributed Computing SS 2007 T. Locher 69

VI. Extensive Example

Phase 1
1. Not necessary

2. Not necessary

3. Send MWOE to v0

4. Const_Frags!

5. Send e to g(e)1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

<3>

<4>

<5>

<5>

g(<1>)

g(<2>)

g(<3>)

g(<4>)

g(<5>)

g(<6>)

g(<4>)

g(<2>)

g(<5>)

g(<6>)

g(<1>)

g(<3>)

Only some messages are displayed

<4>

Principles of Distributed Computing SS 2007 T. Locher 70

VI. Extensive Example

Phase 1
1. Not necessary

2. Not necessary

3. Send MWOE to v0

4. Const_Frags!

5. Send e to g(e)

6. Broadcast e and
update the clusters

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

g(<1>)

g(<2>)

g(<3>)

g(<4>)

g(<5>)

g(<6>)

Only some messages are displayed

g(<4>)

g(<2>)

g(<5>)

g(<3>)

g(<1>)

g(<6>)

Principles of Distributed Computing SS 2007 T. Locher 71

VI. Extensive Example

Phase 2

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and
send it to ℓ(F‘)

Only some messages are displayed

<8>

<12>

<15>
<7>

<13>

Principles of Distributed Computing SS 2007 T. Locher 72

VI. Extensive Example

Phase 2

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and
send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

Only some messages are displayed

<13>

<12> <12>

<14>

<10><8>

g(<12>)

g(<12>)

g(<14>)

g(<13>) g(<9>)

g(<7>)
g(<10>)

g(<8>)
g(<8>)

g(<7>)

g(<9>)

g(<10>)

Principles of Distributed Computing SS 2007 T. Locher 73

VI. Extensive Example

Phase 2

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

<8>

<7>

<10>

<12>

<13>

<12>

<8>

<14>

<9>

<10>

<9>

1. Compute e(v,F‘) and
send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

3. Send appointed edge
to v0

4. Const_Frags!

Principles of Distributed Computing SS 2007 T. Locher 74

VI. Extensive Example

Phase 2 – Const_Frags

1. Construct logical graph

7

8

9

10

12

13 14

Principles of Distributed Computing SS 2007 T. Locher 75

VI. Extensive Example

Phase 2 – Const_Frags

1. Add edges

7

8

9

10

12

13 14

finished finished

Edges between
finished super-
clusters must not
be added!

Principles of Distributed Computing SS 2007 T. Locher 76

VI. Extensive Example

Phase 2
1. Compute e(v,F‘) and

send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

3. Send appointed edge
to v0

4. Const_Frags!

5. Send e to g(e)

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

Only some messages are displayed

<7>
g(<7>)

g(<8>)
g(<8>)

<8>
<8>

g(<10>)

g(<9>)

g(<9>)

g(<10>)

g(<7>)

Principles of Distributed Computing SS 2007 T. Locher 77

VI. Extensive Example

Phase 2
1. Compute e(v,F‘) and

send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

3. Send appointed edge
to v0

4. Const_Frags!

5. Send e to g(e)

6. Broadcast e and
update the clusters

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

Only some messages are displayed

g(<7>)

g(<8>)
g(<8>)

g(<10>)

g(<9>)

g(<9>)

g(<10>)

g(<7>)

Principles of Distributed Computing SS 2007 T. Locher 78

VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and
send it to ℓ(F‘)

Only some messages are displayed

<15>

<12>

<11>

Principles of Distributed Computing SS 2007 T. Locher 79

VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

1. Compute e(v,F‘) and
send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

<12>

g(<12>)

g(<12>)

g(<11>)

g(<11>)

<12>

Principles of Distributed Computing SS 2007 T. Locher 80

VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

g(<12>)

g(<12>)

g(<11>)

g(<11>)

1. Compute e(v,F‘) and
send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

3. Send appointed
edge to v0

4. Const_Frags!
<11>

<12>

<12>

Principles of Distributed Computing SS 2007 T. Locher 81

VI. Extensive Example

Phase 3 – Const_Frags

1. Construct logical graph

11

Principles of Distributed Computing SS 2007 T. Locher 82

VI. Extensive Example

Phase 3 – Const_Frags

1. Add edges

11

Principles of Distributed Computing SS 2007 T. Locher 83

VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13 14

15

v0

g(<12>)

g(<12>)

g(<11>)

g(<11>)

1. Compute e(v,F‘) and
send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

3. Send appointed
edge to v0

4. Const_Frags!

5. Send e to g(e)

<11>

Principles of Distributed Computing SS 2007 T. Locher 84

VI. Extensive Example

Phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13

15

v0

g(<12>)

g(<12>)

g(<11>)

g(<11>)

1. Compute e(v,F‘) and
send it to ℓ(F‘)

2. Select β = 2 lightest
outgoing edges and
appoint guardians

3. Send appointed
edge to v0

4. Const_Frags!

5. Send e to g(e)

6. Broadcast e and
update the clusters

Only some messages are displayed

14

Principles of Distributed Computing SS 2007 T. Locher 85

VI. Extensive Example

After phase 3

1

2

3

4

5

6

7

8

9

11

10

12

13

15

v0

Done! ☺14

References

• M. Adler, W. Dittrich, B. Juurlink, M. Kutylowski, and I.
Rieping. Communication-Optimal Parallel Minimum Spanning
Tree Algorithms. In Proc. 10th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages 27-36, 1998.

• Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed MST
for Constant Diameter Graphs. In Proc. 20th Annual ACM
Symposium on Principles of Distributed Computing (PODC),
pages 63-71, 2001.

• Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. MST
Construction in O(log log n) Communication Rounds. In
Proc. 15th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 94-100, 2003.

• D. Peleg and V. Rubinovich. Near-Tight Lower Bound on
the Time Complexity of Distributed MST Construction. SIAM
J. Comput., 30:1427-1442, 2000.

