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Principles of Distributed Computing

Exercise 1: Sample Solution

1 Vertex Coloring

a) Each node sends exactly two messages to each neighbor, one in the first round and one after
assigning a color. Therefore, the total number of messages is 4|E|, as 4 messages are sent
over each edge.

b) Yes, the algorithm still works, it could be reformulated in the following way (we assume that
each node knows its degree):

Algorithm 1 Asynchronous “∆ + 1”-Coloring
1: send node ID to all neighbors.
2: wait until all neighbor IDs have been received and all neighbors with a lower ID have chosen

a color
3: choose smallest possible color
4: send chosen color to all neighbors

2 Coloring Trees

a) The log-star algorithm for the ring is basically identical to the algorithm for trees. Nodes
do not have a parent in the ring, therefore we simply define the left neighbor of any node to
be its “parent”. Given this definition, we can run the normal log-star algorithm. Using the
same argumentation as for trees it can be shown that no two neighboring nodes choose the
same color.

b) We use two additional colors, ` and r, to solve the termination problem. Furthermore, we
let each node send its color to both neighbors between each round of the log-star algorithm.
This way, each node always knows the colors of both neighbors at the beginning of a round
of the log-star algorithm.

Termination works as follows: Whenever a node reaches a color in R ∪ {`, r}, it sends this
information to its neighbors and does not change its color anymore, i.e., it waits until its
neighbors have also acquired a color in this range in order to start the color reduction phase.
If a node v learns that the color of its left neighbor is in R (regardless of the color of the
right neighbor), and v’s color is not in R, then v recolors itself with the color ` and waits
until both its neighbors have a color in R ∪ {`, r}. If a node v learns that the color of its
right neighbor is in R, while the color of its left neighbor and its own color are both not in
R, then v recolors itself with the color r and waits until both its neighbors have a color in
R∪ {`, r}. Additionally, as a node v to the right of a node colored ` no longer receives new
colors, we need the rule that v simply takes an arbitrary color c ∈ R as the new color of its
parent and computes its new color based on c and its own color in each round.

We now have to prove that no two neighboring nodes use the same color inR∪{`, r}. Assume
nodes u and v to be both colored ` and assume u to be the parent of v. They cannot have



reached color ` at the same time, since u only adopts this color if its color is not in R, but
its parent is in R. This condition cannot hold for v as well. If u reaches color ` first, then
v will reduce its color according to an arbitrary color in each following round and thus will
never choose color `. If node v gets color `, u’s color must be in R and thus u will not change
its color again, in particular not to color `, proving that two neighboring nodes cannot be
colored `. The same argumentation applies also to the color r. The log-star algorithm itself
ensures that no two neighboring nodes get the same color c ∈ R. Note that a node v to the
right of a node colored ` acts like the root in a tree and can thus simply choose an arbitrary
color c ∈ R in each round without causing any conflicts.

Once a node v colored c ∈ R∪{`, r} notices that both neighbors also have colors in R∪{`, r},
it starts the reduction phase, removing first the colors ` and r. Subsequently, the colors are
further reduced to the colors {0, 1, 2}. The nodes need to be synchronized for this procedure,
i.e., a node receiving a reduction message might have to wait if its other neighbor has not
reached the reduction phase. However, after 2 log∗ n+O(1) time, where the factor 2 is caused
by the additional round of messages between each round of the log-star algorithm, all nodes
will be in the reduction phase, enabling a reduction to 3 colors in constant time.

The running time can be reduced to log∗ n + O(1) by simply reordering the steps of the
algorithm: Let the nodes send their initial color to both neighbors in a first step. After
this step, each round consists of computing the new color, sending them to both neighbors,
and receiving the new colors. This ensures that at the beginning of each round, we already
know the color of both neighbors. This way, we do not need an additional round of messages
between each regular round to figure out if the algorithm is close to termination.
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